【題目】在Rt△ABC中,AC=BC=6,以A為旋轉(zhuǎn)中心將△ABC順時(shí)針旋轉(zhuǎn)30°得到△ADE,則圖中陰影部分的面積= .
【答案】9π
【解析】解:∵在Rt△ABC中,AC=BC=6,
∴AB=6 ,
∵以A為旋轉(zhuǎn)中心將△ABC順時(shí)針旋轉(zhuǎn)30°得到△ADE,
∴∠CAD=∠BAE=30°,AD=AC=6,AE=AB=6 ,
∴圖中陰影部分的面積=S扇形BAE﹣S扇形CAD= ﹣ =9π,
所以答案是:9π.
【考點(diǎn)精析】掌握等腰直角三角形和扇形面積計(jì)算公式是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫推理理由:
已知:如圖,D,F,E分別是BC,AC,AB上的點(diǎn),DF∥AB,DE∥AC,
試說明∠EDF=∠A.
解:∵DF∥AB(已知),
∴∠A+∠AFD=180°(____________________).
∵DE∥AC(已知),
∴∠AFD+∠EDF=180°(____________________).
∴∠A=∠EDF(____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南海是我國(guó)的南大門,如圖所示,某天我國(guó)一艘海監(jiān)執(zhí)法船在南海海域正在進(jìn)行常態(tài)化巡航,在A處測(cè)得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時(shí)間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)寫出圖2的陰影部分的正方形的邊長(zhǎng).
(2)用兩種不同的方法求圖中的陰影部分的面積.
(3)觀察如圖2,寫出這三個(gè)代數(shù)式之間的等量關(guān)系.
(4)根據(jù)(3)題中的等量關(guān)系,解決問題:若求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個(gè)動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點(diǎn).
(1)如圖,當(dāng)C點(diǎn)在x軸上運(yùn)動(dòng)時(shí),設(shè)AC=x,請(qǐng)用x表示線段AD的長(zhǎng);
(2)隨著C點(diǎn)的變化,直線AE的位置變化嗎?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點(diǎn)F,當(dāng)點(diǎn)C坐標(biāo)為多少時(shí)直線EF∥直線BO?這時(shí)OF和直線BO的位置關(guān)系如何?請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形ABCD中,AD=5,AB=6,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為F,當(dāng)△DFC是等腰三角形時(shí),DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳,經(jīng)過測(cè)試:同時(shí)開放1個(gè)大餐廳、2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳,1個(gè)小餐廳,可供2280名學(xué)生就餐.
(1)求1個(gè)大餐廳,1個(gè)小餐廳分別可供多少名 就餐?
(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個(gè)有理數(shù)a,b滿足a+b=ab,則稱a,b互為特征數(shù).
(1)3與 互為特征數(shù);
(2)正整數(shù)n (n>1)的特征數(shù)為 ;(用含n的式子表示)
(3)若m,n互為特征數(shù),且m+mn=-2,n+mn=3,求m+n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F是AD的中點(diǎn),FG⊥BC于點(diǎn)G,與DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,GD.
(1)求證:△ECG≌△GHD;
(2)小亮同學(xué)經(jīng)過探究發(fā)現(xiàn):AD=AC+EC.請(qǐng)你幫助小亮同學(xué)證明這一結(jié)論;
(3)若∠B=30°,判斷四邊形AEGF是否為菱形,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com