如圖,AB是⊙O的直徑,AF是⊙O切線,CD是垂直于AB的弦,垂足為E,過點C作DA的平行線與AF相交于點F,CD=,BE=2.
求證:(1)四邊形FADC是菱形;
(2)FC是⊙O的切線.
證明:(1)連接OC,
∵AF是⊙O切線,∴AF⊥AB。
∵CD⊥AB,∴AF∥CD。
∵CF∥AD,∴四邊形FADC是平行四邊形。
∵AB是⊙O的直徑,CD⊥AB,
∴。
設(shè)OC=x,
∵BE=2,∴OE=x﹣2。
在Rt△OCE中,OC2=OE2+CE2,
∴,解得:x=4。
∴OA=OC=4,OE=2。∴AE=6。
在Rt△AED中,,∴AD=CD。
∴平行四邊形FADC是菱形。
(2)連接OF,
∵四邊形FADC是菱形,∴FA=FC。
在△AFO和△CFO中,∵,∴△AFO≌△CFO(SSS)。
∴∠FCO=∠FAO=90°,即OC⊥FC。
∵點C在⊙O上,∴FC是⊙O的切線。
【解析】
試題分析:(1)連接OC,由垂徑定理,可求得CE的長,又由勾股定理,可求得半徑OC的長,然后由勾股定理求得AD的長,即可得AD=CD,易證得四邊形FADC是平行四邊形,繼而證得四邊形FADC是菱形;
(2)連接OF,易證得△AFO≌△CFO,繼而可證得FC是⊙O的切線。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com