如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,P是反比例函數(shù) (x>0)圖象上一動點,以P為圓心,PO為半徑的圓與坐標(biāo)軸分別交于點A、B.
(1)求證:線段AB為⊙P的直徑;
(2)求證:是定值;
(3)在圖2中,直線與反比例函數(shù)(x>0)圖象交于點Q,設(shè)直線與反比例函數(shù) (x>0)圖象交于點E,以Q為圓心,QO為半徑的圓與坐標(biāo)軸分別交于點C、D,判斷△CDE的形狀,并說明理由.
2
解:(1)證明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所對的圓周角,
∴AB是⊙P的直徑.
(2)解:設(shè)點P坐標(biāo)為(m,n)(m>0,n>0),
∵點P是反比例函數(shù)y=(x>0)圖象上一點,∴mn=12.…
如答圖,過點P作PM⊥x軸于點M,PN⊥y軸于點N,則OM=m,ON=n.
由垂徑定理可知,點M為OA中點,點N為OB中點,
∴OA=2OM=2m,OB=2ON=2n,
∴BO•OA=2n×2m=4mn=48.
(3)∵Q為直線與的圖象交點
∴(x>0)
解得,則點Q的坐標(biāo)為()
∵E為直線與的圖象交點
∴(x>0)
解得,則點E的坐標(biāo)為()
∴
∴ EQ=OQ
∴點E在⊙Q上,
由(1)可證CD為⊙Q的直徑
∴∠CED=90°
∴∆CED是直角三角形。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點.
(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發(fā)現(xiàn):
如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.
如圖2,當(dāng)點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.
(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標(biāo)為(),點的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com