【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程(米)與各自所用時間(秒)之間的函數(shù)圖象分別為線段和折線(如圖所示),請根據(jù)圖象,回答下列問題.

1)在起跑后60秒時,乙在甲的前面還是后面?

2)在起跑后多少秒時,兩人相遇?

【答案】(1) 乙在甲的前面;(2) 在起跑后84秒時兩人相遇

【解析】

(1) 觀察圖像即可解答.

(2) 設(shè)線段的解析式為,線段的解析式為.根據(jù)圖象可知,所以,所以線段的解析式為,將點,點代入進(jìn)行計算即可解答.

1)從圖象可以看出,在起跑后60秒時,在線段上方,說明乙在甲的前面.

2)設(shè)線段的解析式為,線段的解析式為.根據(jù)圖象可知,所以,所以線段的解析式為.

將點,點代入

,解得,

所以線段的函數(shù)解析式為.

當(dāng)時,,解得,

所以在起跑后84秒時兩人相遇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RTABC中,∠ACB=90°,∠B=35°CDAB,垂足為點D,

1)求∠ACD的度數(shù);

2)找出圖中相等的角,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0n=0.

1)如果,其中ab為有理數(shù),那么a= ,b= .

2)如果,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店欲購進(jìn)一批跳繩,若購進(jìn)種跳繩根和種跳繩根,則共需元;若購進(jìn)種跳繩根和種跳繩根,則共需元.

1)求、兩種跳繩的單價各是多少?

2)若該商店準(zhǔn)備購進(jìn)這兩種跳繩共根,且種跳繩的數(shù)量不少于跳繩總數(shù)量的.若每根種、種跳繩的售價分別為元、元,問:該商店應(yīng)如何進(jìn)貨才可獲取最大利潤,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)①如圖①的內(nèi)角的平分線與內(nèi)角的平分線相交于點,請?zhí)骄?/span>的關(guān)系,并說明理由.

②如圖②,的內(nèi)角的平分線與外角的平分線相交于點,請?zhí)骄?/span>的關(guān)系,并說明理由.

2)如圖③④,四邊形中,設(shè), 為四邊形的內(nèi)角與外角的平分線所在直線相交而行成的銳角.請利用(1)中的結(jié)論完成下列問題:

①如圖③,求的度數(shù).(用 的代數(shù)式表示)

②如圖④,將四邊形沿著直線翻折得到四邊形,延長線上一點,連接,的角平分線交于點,求的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,點、分別在邊、、上,且,請你添加一個條件,使得全等,這個條件可以是______________(只需寫出一個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昆明某家電專賣店銷售每臺進(jìn)價分別200元、160元的A,B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況

(注:進(jìn)價、售價均保持不變,利銷=銷售收入進(jìn)貨成本)

1)求AB兩種型號的電風(fēng)扇的銷售單價;

2)若專賣店準(zhǔn)備用不多于3560元的金額再采購這兩種型號的電風(fēng)扇共20臺,且采購A型電風(fēng)扇的數(shù)量不少于8臺.求專賣店有哪幾種采購方案?

3)在(2)的條件下.如果采購的電風(fēng)扇都能銷售完,請直接寫出哪種采購方案專賣店所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設(shè)運動的時間為ts(0<t<4).

(1)求證:AF∥CE;

(2)當(dāng)t為何值時,四邊形EHFG為菱形;

(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,線段ABCD相交于點O,連接ADCB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線APCP相交于點P,并且與CD、AB分別相交于MN.試解答下列問題:

1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:   ;

2)仔細(xì)觀察,在圖2中“8字形”的個數(shù):   個;

3)圖2中,當(dāng)∠D50度,∠B40度時,求∠P的度數(shù).

4)圖2中∠D和∠B為任意角時,其他條件不變,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系.(直接寫出結(jié)果,不必證明).

查看答案和解析>>

同步練習(xí)冊答案