分析 (1)由DE∥BC,EF∥DC,可證得四邊形DCFE是平行四邊形,從而問(wèn)題得以解決;
(2)由DC⊥BE,四邊形DCFE是平行四邊形,可得Rt△BEF,求出BF的長(zhǎng),證明BC+DE=BF;
(3)連接AE,CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等邊三角形,問(wèn)題得證.
解答
(1)證明:∵DE∥BC,EF∥DC,
∴四邊形DCFE是平行四邊形.
∴DE=CF.
(2)解:由于四邊形DCFE是平行四邊形,
∴DE=CF,DC=EF,
∴BC+DE=BC+CF=BF.
∵DC⊥BE,DC∥EF,
∴∠BEF=90°.在Rt△BEF中,
∵BE=5,CD=3,
∴BF=$\sqrt{B{E}^{2}+E{F}^{2}}=\sqrt{{5}^{2}+{3}^{2}}=\sqrt{34}$.
∴BC+DE=$\sqrt{34}$.
(3)連接AE,CE,如圖.
∵四邊形ABCD是平行四邊形,
∴AB∥DC.
∵四邊形ABEF是矩形,
∴AB∥FE,BF=AE.
∴DC∥FE.
∴四邊形DCEF是平行四邊形.
∴CE∥DF.
∵AC=BF=DF,
∴AC=AE=CE.
∴△ACE是等邊三角形.
∴∠ACE=60°.
∵CE∥DF,
∴∠AGF=∠ACE=60°.
點(diǎn)評(píng) 本題考查了平行四邊形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及勾股定理.連接AE、CE構(gòu)造等邊三角形是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 100(1-x)2=81 | B. | 81(1-x)2=100 | C. | 100(x-1)2=81 | D. | 81(x+1)2=100 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AB=CD | B. | OB=OD | C. | OA=OC | D. | OB=OC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,-2) | B. | (2,-3) | C. | (-3,2) | D. | (-2,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com