【題目】如圖,小明(視為小黑點(diǎn))站在一個(gè)高為10米的高臺(tái)A上,利用旗桿OM頂部的繩索,劃過(guò)90°到達(dá)與高臺(tái)A水平距離為17米,高為3米的矮臺(tái)B.那么小明在蕩繩索的過(guò)程中離地面的最低點(diǎn)的高度MN是(

A.2B.2.2C.2.5D.2.7

【答案】A

【解析】

首先得出△AOE≌△DBFAAS),進(jìn)而得出CD的長(zhǎng),進(jìn)而求出OM,MN的長(zhǎng)即可.

AEOMBFOM,

∵∠AOE+BOF=BOF+OBF=90°

∴∠AOE=OBF

在△AOE和△DBF中,

OEA=BFO

AOE=OBF

OA=OB

∴△AOE≌△DBFAAS),

OE=BF,AE=OF

OE+OF=AE+BF=CD=17m

EF=10-3=7

OE=5OF=12

OM=OF+FM=15m

由勾股定理得ON=OA=13

MN=15-13=2m

故答案選擇A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)AD,C,F在同一條直線上,ADCF,ABDE,BCEF.

(1)求證:△DEF≌△ABC.

(2)若∠A52°,∠B88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與直線y=x+3x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,交x軸正半軸于點(diǎn)B.

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線上任意一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x.

若點(diǎn)P在第二象限,過(guò)點(diǎn)PPN⊥x軸于N,交直線AC于點(diǎn)M,求線段PM關(guān)于x的函數(shù)解析式,并求出PM的最大值;

若點(diǎn)P是拋物線上任意一點(diǎn),連接CP,以CP為邊作正方形CPEF,當(dāng)點(diǎn)E落在拋物線的對(duì)稱(chēng)軸上時(shí),請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店用6000元購(gòu)進(jìn)A、B兩種新式服裝.按照標(biāo)價(jià)出售后獲利3800(毛利潤(rùn)=售價(jià)-進(jìn)價(jià)),這兩種服裝的進(jìn)價(jià)、售價(jià)如表所示:

類(lèi)型

價(jià)格

A

B

進(jìn)價(jià)(/)

60

100

售價(jià)(/)

100

160

(1)求這兩種服裝各購(gòu)進(jìn)的件數(shù):

(2)如果A種服裝售價(jià)不變,B種服裝降價(jià)a元出售.這批服裝全部售完后所獲利潤(rùn)為w.

①寫(xiě)出wa之間的函數(shù)關(guān)系式:

②當(dāng)20≤a≤50時(shí),這批服裝全部售出后,獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,在四邊形中,,點(diǎn)的中點(diǎn),若的平分線,試判斷,,之間的等量關(guān)系.

解決此問(wèn)題可以用如下方法:延長(zhǎng)的延長(zhǎng)線于點(diǎn),易證得到,從而把,,轉(zhuǎn)化在一個(gè)三角形中即可判斷.

之間的等量關(guān)系________

2)問(wèn)題探究:如圖②,在四邊形中,,的延長(zhǎng)線交于點(diǎn),點(diǎn)的中點(diǎn),若的平分線,試探究,之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以RtABC的邊AB為直徑作ABC的外接圓⊙O,B的平分線BEACD,交⊙OE,過(guò)EEFACBA的延長(zhǎng)線于F.

(1)求證:EF是⊙O切線;

(2)若AB=15,EF=10,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,∠ACB=90°,AC=8BC=16,DAC上的一點(diǎn),CD=3,點(diǎn)PB點(diǎn)出發(fā)沿射線BC方向以每秒2個(gè)單位的速度向右運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.連結(jié)AP.

1)當(dāng)t=3秒時(shí),求AP的長(zhǎng)度(結(jié)果保留根號(hào));

2)當(dāng)ABP為等腰三角形時(shí),求t的值;

3)過(guò)點(diǎn)DDEAP于點(diǎn)E.在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),能使DE=CD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,弦CD平分∠ACB,點(diǎn)E為弧AD上一點(diǎn),連接CE、DE,CDAB交于點(diǎn)N.

(1)如圖1,求證:∠AND=CED;

(2)如圖2,AB為⊙O直徑,連接BE、BD,BECD交于點(diǎn)F,若2BDC=90°﹣DBE,求證:CD=CE;

(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)D、E、F分別在AB、BCAC BECF,AD+ECAB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A40°時(shí),求∠DEF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案