如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長(zhǎng)為( 。

   A.2 B.4 C.4    D.8

考點(diǎn):平行四邊形的性質(zhì);等腰三角形的判定與性質(zhì);含30度角的直角三角形;勾股定理.

專(zhuān)題:計(jì)算題.

分析:由AE為角平分線(xiàn),得到一對(duì)角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線(xiàn)平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,等量代換及等角對(duì)等邊得到AD=DF,由F為DC中點(diǎn),AB=CD,求出AD與DF的長(zhǎng),得出三角形ADF為等腰三角形,根據(jù)三線(xiàn)合一得到G為AF中點(diǎn),在直角三角形ADG中,由AD與DG的長(zhǎng),利用勾股定理求出AG的長(zhǎng),進(jìn)而求出AF的長(zhǎng),再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長(zhǎng).

解答:解:∵AE為∠ADB的平分線(xiàn),

∴∠DAE=∠BAE,

∵DC∥AB,

∴∠BAE=∠DFA,

∴∠DAE=∠DFA,

∴AD=FD,

又F為DC的中點(diǎn),

∴DF=CF,

∴AD=DF=DC=AB=2,

在Rt△ADG中,根據(jù)勾股定理得:AG=,

則AF=2AG=2,

在△ADF和△ECF中,

∴△ADF≌△ECF(AAS),

∴AF=EF,

則AE=2AF=4

故選B

點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,等腰三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵. 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線(xiàn)交CD于點(diǎn)E,∠ADC的平分線(xiàn)交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線(xiàn)交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線(xiàn)段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案