(10分)如圖,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

【小題1】(1)試猜想AE與GC有怎樣的位置關(guān)系,并證明你的結(jié)論;
【小題2】(2)將正方形DEFG繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),使點(diǎn)E落在BC邊上,如圖,連接AE和GC. 你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請(qǐng)說明理由.

【小題1】(1) AE⊥CE,由△ADE≌△CDG可證;
【小題2】(2)(1)的結(jié)論仍然成立,證明方法同(1)解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)為弧CF的中點(diǎn),連接于點(diǎn)為△ABC的角平分線,且,垂足為點(diǎn).

(1)求證:是半圓的切線;

(2)若,,求的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長(zhǎng)線交于點(diǎn)E.

(1)求證:△OAB∽△EDA;                               

(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·柳州)(本題滿分10分)
如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CDAD,垂足為D,直線CDAB的延長(zhǎng)線交于點(diǎn)E
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級(jí)第一次中考模擬考試數(shù)學(xué)卷 題型:選擇題

(本題滿分10分)如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)為弧CF的中點(diǎn),連接于點(diǎn)為△ABC的角平分線,且,垂足為點(diǎn). [來源:]

(1)求證:是半圓的切線;

(2)若,,求的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東聊城卷)數(shù)學(xué) 題型:解答題

(11·柳州)(本題滿分10分)

   如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點(diǎn)C,作CDAD,垂足為D,直線CDAB的延長(zhǎng)線交于點(diǎn)E

(1)求證:直線CD為⊙O的切線;

(2)當(dāng)AB=2BE,且CE=時(shí),求AD的長(zhǎng).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案