(本題滿分12分,每小題滿分各4分)已知平面直角坐標(biāo)系xOy(如圖1),一次函數(shù)的圖 像與y軸交于點A,點M在正比例函數(shù)的圖像上,且MOMA.二次函數(shù)yx2bxc的圖像經(jīng)過點A、M

(1)求線段AM的長;

(2)求這個二次函數(shù)的解析式;

(3)如果點By軸上,且位于點A下方,點C在上述二次函數(shù)的圖像上,點D在一次函數(shù)的圖像上,且四邊形ABCD是菱形,求點C的坐標(biāo).

 

(本題滿分12分,每小題滿分各4分)

[解] (1) 根據(jù)兩點之間距離公式,設(shè)M(a, a),由|MO |=| MA |, 解得:a=1,則M(1, ),

AM=。

(2) ∵ A(0, 3),∴ c=3,將點M代入y=x2+bx+3,解得:b= -,即:y=x2-x+3。

(3) C(2, 2) (根據(jù)以AC、BD為對角線的菱形)。注意:A、B、C、D是按順序的。

[解] 設(shè)B(0,m) (m<3),C(n,n2-n+3),D(n,n+3),

| AB |=3-m,| DC |=yD-yC=n+3-(n2-n+3)=n-n2,

| AD |==n

| AB |=| DC |Þ3-m=n-n2…j,|AB |=| AD |Þ3-m=n…k。

解j,k,得n1=0(舍去),或者n2=2,將n=2代入C(n,n2-n+3),得C(2, 2)。

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,每小題滿分各6分)如圖(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB與CE交于F,ED與AB、BC分別交于M、H.

(1)求證:CF=CH;

(2)如圖(2),△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,每小題滿分各6分)
已知:直角坐標(biāo)系xoy中,將直線沿y軸向下平移3個單位長度后恰好經(jīng)過B(-3,0)及y軸上的C點.若拋物線軸交于A,B兩點(點A在點B的右側(cè)),且經(jīng)過點C,(1)求直線及拋物線的解析式;(2)設(shè)拋物線的頂點為,點在拋物線的對稱軸上,且,求點的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東深圳卷)數(shù)學(xué) 題型:解答題

(本題滿分12分,每小題滿分各6分)如圖,在梯形ABCD中,AD//BC,ABDC,過點DDEBC,垂足為E,并延長DEF,使EFDE.聯(lián)結(jié)BF、CDAC
(1)求證:四邊形ABFC是平行四邊形;
(2)如DE2BE·CE,求證四邊形ABFC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(云南曲靖) 題型:解答題

(本題滿分12分,每小題6分)
(1) 在如圖所示的平面直角坐標(biāo)系中,先畫出△OAB 關(guān)于y軸對稱的圖形,再畫出△OAB繞點O旋轉(zhuǎn)180°后得到的圖形. 
(2)先閱讀后作答:我們已經(jīng)知道,根據(jù)幾何圖形的面積  關(guān)系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:(2a +b)( a +b) =" 2a2" +3ab +b2,就可以用圖22-1的面積關(guān)系來說明.

① 根據(jù)圖22-2寫出一個等式    ;
② 已知等式:(x +p)(x +q)="x2" + (p +q) x + pq,請你畫出一個相應(yīng)的幾何圖形加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(天津卷)數(shù)學(xué) 題型:解答題

(本題滿分12分,每小題滿分各4分)已知平面直角坐標(biāo)系xOy(如圖1),一次函數(shù)的圖 像與y軸交于點A,點M在正比例函數(shù)的圖像上,且MOMA.二次函數(shù)yx2bxc的圖像經(jīng)過點A、M

(1)求線段AM的長;

(2)求這個二次函數(shù)的解析式;

(3)如果點By軸上,且位于點A下方,點C在上述二次函數(shù)的圖像上,點D在一次函數(shù)的圖像上,且四邊形ABCD是菱形,求點C的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊答案