(2013年四川綿陽14分)我們知道,三角形的三條中線一定會交于一點(diǎn),這一點(diǎn)就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問題.請你利用重心的概念完成如下問題:

(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長交BC于D,證明:;
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點(diǎn),且滿足,試判斷O是△ABC的重心嗎?如果是,請證明;如果不是,請說明理由;
(3)若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點(diǎn)重合)(如圖3),S四邊形BCHG,SAGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.
解:(1)證明:如答圖1所示,連接CO并延長,交AB于點(diǎn)E,

∵點(diǎn)O是△ABC的重心,∴CE是中線,點(diǎn)E是AB的中點(diǎn)。
∴DE是中位線。∴DE∥AC,且DE=AC。
∵DE∥AC,∴△AOC∽△DOE。
。
∵AD=AO+OD,
。
(2)答:點(diǎn)O是△ABC的重心。證明如下:
如答圖2,作△ABC的中線CE,與AD交于點(diǎn)Q,

則點(diǎn)Q為△ABC的重心。
由(1)可知,  ,
,
∴點(diǎn)Q與點(diǎn)O重合(是同一個點(diǎn))。
∴點(diǎn)O是△ABC的重心。
(3)如答圖3所示,連接DG.

設(shè)SGOD=S,由(1)知,即OA=2OD,
∴SAOG=2S,SAGD=SGOD+SAGO=3S。
為簡便起見,不妨設(shè)AG=1,BG=x,則SBGD=3xS.
∴SABD=SAGD+SBGD=3S+3xS=(3x+3)S。
∴SABC=2SABD=(6x+6)S。
設(shè)OH=k•OG,由SAGO=2S,得SAOH=2kS,
∴SAGH=SAGO+SAOH=(2k+2)S。
∴S四邊形BCHG=SABC﹣SAGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。
 ①。
如答圖3,過點(diǎn)O作OF∥BC交AC于點(diǎn)F,過點(diǎn)G作GE∥BC交AC于點(diǎn)E,則OF∥GE。
∵OF∥BC,∴!郞F=CD=BC。
∵GE∥BC,∴。∴。
,∴。
∵OF∥GE,∴!,即。
,代入①式得:

∴當(dāng)x=時,有最大值,最大值為。
(1)如答圖1,作出中位線DE,證明△AOC∽△DOE,可以證明結(jié)論。
(2)如答圖2,作△ABC的中線CE,與AD交于點(diǎn)Q,則點(diǎn)Q為△ABC的重心.由(1)可知,,而已知,故點(diǎn)O與點(diǎn)Q重合,即點(diǎn)O為△ABC的重心。
(3)如答圖3,利用圖形的面積關(guān)系,以及相似線段間的比例關(guān)系,求出的表達(dá)式,這是一個二次函數(shù),利用二次函數(shù)的性質(zhì)求出其最大值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,△是等邊三角形,點(diǎn)分別在邊、上,

(1)求證:△∽△;(2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=2x+4與x軸、y軸的交點(diǎn)分別為A、B,y軸上點(diǎn)C的坐標(biāo)為(0,2),在x軸上找一點(diǎn)P,使得以P、O、C為頂點(diǎn)的三角形與△AOB相似,則點(diǎn)P的坐標(biāo)為                       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個動點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.

(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB⊥BD,CD⊥BD

(1)若AB=9,CD=4,BD=10,請問在BD上是否存在P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?若存在,求BP的長;若不存在,請說明理由;
(2)若AB=9,CD=4,BD=12,請問在BD上存在多少個P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長;
(3)若AB=9,CD=4,BD=15,請問在BD上存在多少個P點(diǎn),使以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似?并求BP的長;
(4)若AB=m,CD=n,BD=l,請問m,n,l滿足什么關(guān)系時,存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個P點(diǎn)?兩個P點(diǎn)?三個P點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖.在ABCD中,AB=6、AD=9,∠BAD的平分線交BC于點(diǎn)E,DC的延長線于點(diǎn)F, BG⊥AE,垂足為G,若BG=4,則△CEF的面積是
A.2  B. C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2013年四川瀘州2分)如圖,在等腰直角△ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點(diǎn)P.則下列結(jié)論:
(1)圖形中全等的三角形只有兩對;(2)△ABC的面積等于四邊形CDOE的面積的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正確的結(jié)論有【  】

A.1個     B.2個     C.3個     D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A、B、C分別是線段A1B,B1C,C1A的中點(diǎn),若△ABC的面積是1,那么△A1B1C1的面積   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,則BC的長為( 。
A.B.7C.D.

查看答案和解析>>

同步練習(xí)冊答案