在△ABC中,∠C=90°,AB=4cm,BC=2cm,以點A為圓心,以3.5cm長為半徑作圓,試判斷點C和點B與⊙A的位置關(guān)系.

解:∵∠C=90°,AB=4cm,BC=2cm,
∴AC==2;
∵AC=2<r=3.5,
∴點C在圓內(nèi),
∵AB=4>r,
∴點B在圓外.
分析:答題時主要判斷C、B兩點到圓心A的距離,然后判斷C、B兩點和⊙A的位置關(guān)系.
點評:本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點到圓心的距離為d,則有:當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上,當(dāng)d<r時,點在圓內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案