【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC,AC=.四邊形BDEF是△ABC的內(nèi)接正方形(點D、E、F在三角形的邊上).則此正方形的面積為( )
A.25.B. .C.5.D.10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當AE= cm時,四邊形CEDF是矩形;②當AE= cm時,四邊形CEDF是菱形.(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理在平面幾何中有著不可替代的重要地位,在我國古算書(周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,如圖1是由邊長均為1的小正方形和Rt△ABC構成的,可以用其面積關系驗證勾股定理,將圖1按圖2所示“嵌入”長方形LMJK,則該長方形的面積為( )
A.120B.110C.100D.90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,增加下列條件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的條件是______________.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE∥AB,分別交BC、AC于點D、E,點F在BC的延長線上,且CF=DE.
(1)求證:△CEF是等腰三角形;
(2)連接AD,當AD⊥BC,BC=8,△CEF的周長為16時,求△DEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°
(1)求證:BD⊥CD;
(2)若BD=6,CD=2,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)的圖像與正比例函數(shù)的圖像都經(jīng)過點,點在反比例函數(shù)的圖像上,點在正比例函數(shù)的圖像上.
(1)求此正比例函數(shù)的解析式;
(2)求線段AB的長;
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某個圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).
(1)請連接圖案,它是一個什么漢字?
(2)作出這個圖案關于y軸的軸對稱圖形,并寫出新圖案相應各端點的坐標,你得到一個什么漢字?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com