(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點(diǎn)P,使得△ABP的周長最。埱蟪鳇c(diǎn)P的坐標(biāo).

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求得待定系數(shù)的值;
(2)設(shè)拋物線與x軸的另一交點(diǎn)為C,根據(jù)(1)所得的函數(shù)解析式即可求得A、B、C的坐標(biāo);在△ABP中,AB的長為定值,若三角形的周長最小,那么AP+BP的長最。挥捎贏、C關(guān)于拋物線的對稱軸對稱,若連接BC,那么BC與對稱軸的交點(diǎn)即為所求的P點(diǎn),可先求出直線BC的解析式,然后聯(lián)立拋物線的對稱軸方程,即可求得P點(diǎn)的坐標(biāo).
解答:解:(1)根據(jù)題意,得(2分)
解得(3分)
∴二次函數(shù)的表達(dá)式為y=x2-4x-5.(4分)

(2)令y=0,得二次函數(shù)y=x2-4x-5的圖象與x軸
的另一個(gè)交點(diǎn)坐標(biāo)C(5,0);(5分)
由于P是對稱軸x=2上一點(diǎn),
連接AB,由于,
要使△ABP的周長最小,只要PA+PB最;(6分)
由于點(diǎn)A與點(diǎn)C關(guān)于對稱軸x=2對稱,連接BC交對稱軸于點(diǎn)P,則PA+PB=BP+PC=BC,根據(jù)兩點(diǎn)之間,線段最短,可得PA+PB的最小值為BC;
因而BC與對稱軸x=2的交點(diǎn)P就是所求的點(diǎn);(8分)
設(shè)直線BC的解析式為y=kx+b,
根據(jù)題意可得
解得
所以直線BC的解析式為y=x-5;(9分)
因此直線BC與對稱軸x=2的交點(diǎn)坐標(biāo)是方程組的解,
解得
所求的點(diǎn)P的坐標(biāo)為(2,-3).(10分)
點(diǎn)評:此題主要考查了二次函數(shù)解析式的確定以及軸對稱性質(zhì)的應(yīng)用,能夠正確的確定P點(diǎn)的位置時(shí)解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•東營)如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)判斷直線CD與⊙O的位置關(guān)系為
相切
相切
;
(2)若⊙O的半徑為5,則點(diǎn)A到CD所在直線的距離為
7.5
7.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•東營)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點(diǎn)P,使得△ABP的周長最。埱蟪鳇c(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•東營)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個(gè)角均為大小相同的正方形,正方形的邊長為折疊進(jìn)去的寬度.
(1)設(shè)課本的長為acm,寬為bcm,厚為ccm,如果按如圖所示的包書方式,將封面和封底各折進(jìn)去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙,按圖所示的方法包好這本字典,并使折疊進(jìn)去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•東營)如圖,點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),△ACD和△BCE是在AB同側(cè)的兩個(gè)等邊三角形,DM,EN分別是△ACD和△BCE的高,點(diǎn)C在線段AB上沿著從點(diǎn)A向點(diǎn)B的方向移動(dòng)(不與點(diǎn)A,B重合),連接DE,得到四邊形DMNE.這個(gè)四邊形的面積變化情況為( )

A.逐漸增大
B.逐漸減小
C.始終不變
D.先增大后變小

查看答案和解析>>

同步練習(xí)冊答案