【題目】如圖,AB為⊙O的直徑,CD切⊙O于點C,與BA的延長線交于點D,OE⊥AB交⊙O于點E,連接CA、CE、CB,CE交AB于點G,過點A作AF⊥CE于點F,延長AF交BC于點P.
(Ⅰ)求∠CPA的度數(shù);
(Ⅱ)連接OF,若AC=,∠D=30°,求線段OF的長.
【答案】(Ⅰ)45°;(Ⅱ)
【解析】
(Ⅰ)連接AE,由OA=OB且OE⊥AB知∠OEG+∠AEC=45°,再證∠OEG=∠BAP、∠AEC=∠ABP,在△ABP中利用三角形外角性質(zhì)可得答案;
(Ⅱ)由切線性質(zhì)及∠D=30°可得∠AOC=∠OAC=60°,在Rt△ABC中求得BC=3,由∠APC=45°、∠ACP=90°得CP=AC=,可知BP=3﹣,證OF為△ABP中位線可得答案.
解:(Ⅰ)如圖,連接AE,
∵OE⊥AB,OA=OE,
∴∠AOE=90°,∠AEO=45°,
∴∠OEG+∠OGE=90°,
∵AF⊥CE,
∴∠AFG=90°,
∴∠FAG+∠AGF=90°,
∵∠AGF=∠OGE,
∴∠OEG=∠BAP,
∵∠AEC=∠ABC,
∴∠APC=∠ABC+∠BAP=∠AEC+∠OEG=∠AEO=45°;
(Ⅱ)連接OC,
∵CD是⊙O的切線,
∴∠DCO=90°,
∵∠D=30°,
∴∠AOC=60°,
∵OA=OC,
∴∠BAC=60°,
在Rt△ABC中,AC=,
∴BC=ACtan∠BAC=×=3,
由(1)知,AC=CP=,
∴BP=BC﹣CP=3﹣,
∵AF⊥CE,
∴AF=PF,
∵OA=OB,
∴OF=BP=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夢想商店進了一批服裝,進貨單價為元,如果按每件元出售,可銷售件,如果每件提價元出售,其銷售量就減少件.
現(xiàn)在獲利元,且銷售成本不超過元,問這種服裝銷售單價應(yīng)定多少元?這時應(yīng)進多少服裝?
當(dāng)銷售單價應(yīng)定多少元時,該商店獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為8,為上一點, ,為邊上的一個動點,分別以為邊在正方形內(nèi)部作等邊三角形和等邊三角形.
(1)證明:;
(2)直線與交于點,點在運動過程中.
①的度數(shù)是否發(fā)生改變?若不變,求出這個角的度數(shù);若改變,說明理由;
②連結(jié),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2,AB=1,則△PAB周長的最小值是( 。
A. 2+1 B. +1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點D,交AC于點E,連結(jié)DE,過點B作BP平行于DE,交⊙O于點P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗,我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達式,直接寫出y的取值范圍;
(2)通過列表、描點、畫圖,在平面直角坐標(biāo)系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點,且滿足x1<x2≤-1時, y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOC=100°,∠AOB=α,以OB為邊作等邊△BOD,連接CD.
(1)求證:△ABO≌△CBD;
(2)當(dāng)α=150°時,試判斷△COD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時△COD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C'處,連接C'D交AB于點E,連接BC',當(dāng)△BC'D是直角三角形時,DE的長為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com