已知∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=CB,過程如下:
過點C作CE⊥CB于點C,與MN交于點E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四邊形ACDB內(nèi)角和為360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.
(1)當MN繞A旋轉(zhuǎn)到如圖(2)和圖(3)兩個位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并對圖(2)給予證明.
(2)MN在繞點A旋轉(zhuǎn)過程中,當∠BCD=30°,BD=時,則CD=______
【答案】分析:(1)過點C作CE⊥CB于點C,與MN交于點E,證明△ACE≌△DCB,則△ECB為等腰直角三角形,據(jù)此即可得到BE=CB,根據(jù)BE=AB-AE即可證得;
(2)過點B作BH⊥CD于點H,證明△BDH是等腰直角三角形,求得DH的長,在直角△BCH中,利用直角三角形中30°的銳角所對的直角邊等于斜邊的一半,即可求得.
解答:(1)如圖(2):AB-BD=CB.
證明:過點C作CE⊥CB于點C,與MN交于點E,
∵∠ACD=90°,
∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,
∵∠AFC=∠BFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB為等腰直角三角形,
∴BE=CB.
又∵BE=AB-AE,
∴BE=AB-BD,
∴AB-BD=CB.

如圖(3):BD-AB=CB.
證明:過點C作CE⊥CB于點C,與MN交于點E,
∵∠ACD=90°,
∴∠ACE=90°+∠ACB,∠BCD=90°+∠ACB,
∴∠BCD=∠ACE.
∵DB⊥MN,
∴∠CAE=90°-∠AFB,∠D=90°-∠CFD,
∵∠AFB=∠CFD,
∴∠CAE=∠D,
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB為等腰直角三角形,
∴BE=CB.
又∵BE=AE-AB,
∴BE=BD-AB,
∴BD-AB=CB.

(2)如圖(2),過點B作BH⊥CD于點H,
∵∠ABC=45°,DB⊥MN,
∴∠CBD=135°,
∵∠BCD=30°,
∴∠CBH=60°,
∴∠DBH=75°,
∴∠D=45°,
∴BH=BD•sin45°,
∴△BDH是等腰直角三角形,
∴DH=BH=BD=×=1,
∵∠BCD=30°,
∴CH=
∴CD=CH+DH=+1,
∴CB=2.
點評:本題考查了全等三角形的性質(zhì)和判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質(zhì)是全等三角形的對應邊相等,對應角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、如圖,在△ABC中,∠ACB=90°,CD⊥AB,點E在CB的延長線上,已知∠ACD=55°,求∠ABE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•牡丹江)已知∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=
2
CB,過程如下:
過點C作CE⊥CB于點C,與MN交于點E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四邊形ACDB內(nèi)角和為360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=
2
CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=
2
CB.
(1)當MN繞A旋轉(zhuǎn)到如圖(2)和圖(3)兩個位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并對圖(2)給予證明.
(2)MN在繞點A旋轉(zhuǎn)過程中,當∠BCD=30°,BD=
2
時,則CD=
3
+1
3
+1
,CB=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=數(shù)學公式CB,過程如下:
過點C作CE⊥CB于點C,與MN交于點E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四邊形ACDB內(nèi)角和為360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=數(shù)學公式CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=數(shù)學公式CB.
(1)當MN繞A旋轉(zhuǎn)到如圖(2)和圖(3)兩個位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并對圖(2)給予證明.
(2)MN在繞點A旋轉(zhuǎn)過程中,當∠BCD=30°,BD=數(shù)學公式時,則CD=___,CB=___.
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠ACD=90°,MN是過點A的直線,AC=DC,DB⊥MN于點B,如圖(1).易證BD+AB=CB,過程如下:

過點C作CE⊥CB于點C,與MN交于點E

∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.

∵四邊形ACDB內(nèi)角和為360°,∴∠BDC+∠CAB=180°.

∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.

又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BE=CB.

又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.

(1)當MN繞A旋轉(zhuǎn)到如圖(2)和圖(3)兩個位置時,BD、AB、CB滿足什么樣關(guān)系式,請寫出你的猜想,并對圖(2)給予證明.

(2)MN在繞點A旋轉(zhuǎn)過程中,當∠BCD=30°,BD=時,則CD= 2 ,CB= +1 

查看答案和解析>>

同步練習冊答案