A. | $\frac{1}{{2}^{2016}}$ | B. | 1-$\frac{1}{{2}^{2016}}$ | C. | $\frac{1}{{2}^{2015}}$ | D. | 2-$\frac{1}{{2}^{2015}}$ |
分析 根據(jù)中點(diǎn)的性質(zhì)及折疊的性質(zhì)可得DA=DA'=DB,從而可得∠ADA'=2∠B,結(jié)合折疊的性質(zhì)可得∠ADA'=2∠ADE,可得∠ADE=∠B,繼而判斷DE∥BC,得出DE是△ABC的中位線,證得AA1⊥BC,得到AA1=2,求出h1=2-1=1,同理h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是經(jīng)過第n次操作后得到的折痕Dn-1En-1到BC的距離hn=2-$\frac{1}{{2}^{n-1}}$,求得結(jié)果h2016=2-$\frac{1}{{2}^{2015}}$.
解答 解:連接AA1.
由折疊的性質(zhì)可得:AA1⊥DE,DA=DA1,
又∵D是AB中點(diǎn),
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2-1=1,
同理,h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$
…
∴經(jīng)過第n次操作后得到的折痕Dn-1En-1到BC的距離hn=2-$\frac{1}{{2}^{n-1}}$.
∴h2016=2-$\frac{1}{{2}^{2015}}$.
故選:D.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),三角形中位線的性質(zhì),平行線等分線段定理,找出規(guī)律是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3^2}=±3$ | B. | $\sqrt{{{17}^2}-{8^2}}=9$ | C. | ${(\sqrt{-7})^2}=7$ | D. | $\sqrt{{{(-7)}^2}}=7$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com