已知拋物線y=3x2+2x+n,
(1)若n=-1,求該拋物線與x軸的交點坐標;
(2)當-1<x<1時,拋物線與x軸有且只有一個公共點,求n的取值范圍.
分析:(1)把n=-1,y=0代入拋物線解析式,通過解一元二次方程可求得交點坐標.
(2)分3種情況.第1種:△=0,n=
1
3
;
第2種:把x=-1代入函數(shù)使y大于0,且把x=1代入函數(shù),使y小于0,解這個不等式,可得n的取值范圍;
第3種:把x=-1代入函數(shù)使y小于0,且把x=1代入函數(shù),使y大于0,解這個不等式組,可得n的取值范圍.
綜合這三個結果即可得n的范圍.在2,3種情況下必須保證△大于0.
解答:解:(1)當n=-1時,拋物線為y=3x2+2x-1,
方程3x2+2x-1=0的兩個根為:x=-1或x=
1
3

∴該拋物線與x軸交點的坐標是(-1,0)和(
1
3
,0
);(2分)
(2)∵拋物線與x軸有公共點,
∴對于方程3x2+2x+n=0,判別式△=4-12n≥0,
∴n≤
1
3
.(3分)
①當n=
1
3
時,由方程3x2+2x+
1
3
=0,解得x1=x2=-
1
3
.此時拋物線為y=3x2+2x+
1
3
與x軸只有一個公共點(-
1
3
,0
);(4分)
②當n<
1
3
時,
x1=-1時,y1=3-2+n=1+n;
x2=1時,y2=3+2+n=5+n;
由已知-1<x<1時,該拋物線與x軸有且只有一個公共點,考慮其對稱軸為x=-
1
3
,
應有y1≤0,且y2>0即1+n≤0,且5+n>0.(5分)
解得:-5<n≤-1.(6分)
綜合①,②得n的取值范圍是:n=
1
3
或-5<n≤-1.(7分)
點評:考查二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-3x2+12x-9.
(1)求它的對稱軸;
(2)求它與x軸的交點A和B,以及與y軸的交點C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知拋物線y=-3x2-(2c-b)x+a2,其中a、b、c是一個直角三角形的三邊的長,且a<b<c,又知這個三角形兩銳角的正弦值分別是方程25x2-35x+12=0的兩個根.
(1)求a:b:c;
(2)設這條拋物線與x軸的左、右交點分別是M、N,與y軸的交點為T,頂點為P,求△MPT的面積(用只含a的代數(shù)式表示);
(3)在(2)的條件下,如果△MPT的面積為9,問拋物線上是否存在異于點P的點Q,使得△QMT的面積與△MPT的面積相等?如果存在,請求出點Q的坐標,如果不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=3x2+3x.
(1)通過配方,將拋物線的表達式寫成y=a(x+h)2+k的形式(要求寫出配方過程);
(2)求出拋物線的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y1=-3x2+3,直線y2=3x+3,當x任取一值時,x對應的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:
①當x>0時,y1>y2;②使得M大于3的x值不存在;③當x<0時,x值越大,M值越; ④使得M=1的x值是-
2
3
6
3

其中正確的是(  )

查看答案和解析>>

同步練習冊答案