【題目】如圖,直線y1=x+b與雙曲線y2=交于點A(1,4)和點B,經(jīng)過點A的另一條直線與雙曲線y2=交于點C.則:
①直線AB的解析式為y1=x+3;
②B(﹣1,﹣4);
③當x>1時,y2<y1;
④當AC的解析式為y=4x時,△ABC是直角三角形.
其中正確的是 .(把所有正確結(jié)論的序號都寫在橫線上)
【答案】①③④.
【解析】
試題分析:∵直線y1=x+b與雙曲線y2=交于點A(1,4),∴4=1+b,4=,∴b=3,k=4,
∴直線AB的解析式為y1=x+3,雙曲線的解析式為y2=,故①正確;
把y1=x+3代入y2=,得x+3=,整理得,x2+3x﹣4=0,解得x=﹣4或1,當x=﹣4時,y1=﹣4+3=﹣1,∴B點坐標為(﹣4,﹣1),故②錯誤;
由圖象可知,y2<y1時,﹣4<x<0或x>1,∴當x>1時,y2<y1,故③正確;
當AC的解析式為y=4x時,把y=4x代入y2=,得4x=,整理得,4x2=4,
解得x=±1,當x=﹣1時,y=﹣4,∴C(﹣1,﹣4).∵A(1,4),B(﹣4,﹣1),C(﹣1,﹣4),∴AB2=(﹣4﹣1)2+(﹣1﹣4)2=50,BC2=(﹣1+4)2+(﹣4+1)2=18,AC2=(﹣1﹣1)2+(﹣4﹣4)2=68,∴AB2+BC2=AC2,∴△ABC是直角三角形.
則正確的結(jié)論是①③④.
科目:初中數(shù)學 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在直角坐標系中,已知A(0,a),B(b,0)C(3,c)三點,若a,b,c滿足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是,,,先將向上平移3個單位長度,再向右平移2個單位長度,得到.
(1)在圖中畫出;
(2)點,,的坐標分別為______、________、_________;
(3)若有一點,使與面積相等,求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年4月23日,第23個世界讀書日.為了推進中華傳統(tǒng)文化教育,營造濃郁的讀書氛圍,我區(qū)某學校舉辦了“讓讀書成為習慣,讓書香飄滿校園”主題活動,為此特為每個班級訂購了一批新的圖書.初二年級兩個班訂購圖書情況如下表:
老舍文集(套) | 四大名著(套) | 總費用(元) | |
初二(1)班 | 4 | 2 | 480 |
初二(2)班 | 2 | 3 | 520 |
(1)求老舍文集和四大名著每套各是多少元;
(2)學校準備再購買老舍文集和四大名著共10套,總費用不超過700元,問學校有哪幾種購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
(1)求證:△BCE≌△ACD;
(2)求證:FC=HC
(3)求證:FH∥BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公交車每月的支出費用為4000元,每月的乘車人數(shù)(人)與每月利潤(利潤=收入費用-支出費用)(元)的變化關(guān)系如下表所示(每位乘客的公交票價是固定不變的);
(1)在這個變化過程中, 是自變量, 是因變量;(填中文)
(2)觀察表中數(shù)據(jù)可知,每月乘客量達到 人以上時,該公交車才不會虧損;
(3)請你估計當每月乘車人數(shù)為3500人時,每月利潤為 元?
(4)若5月份想獲得利潤5000元,則請你估計5月份的乘客量需達 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與x軸交于點A(-1,0)、B(3,0),與y軸交于點C(0,3).
(1)求二次函數(shù)的表達式;
(2)設上述拋物線的對稱軸l與x軸交于點D,過點C作CE⊥l于E,P為線段DE上一點,Q(m,0)為x軸負半軸上一點,以P、Q、D為頂點的三角形與△CPE相似;
①當滿足條件的點有且只有三個時,求的取值范圍;
②若滿足條件的點有且只有兩個,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com