分析 (1)由旋轉(zhuǎn)的性質(zhì)可知CO=CD,∠OCD=60°,可判斷△COD是等邊三角形;
(2)由(1)可知∠COD=60°,當(dāng)α=150°時(shí),∠ADO=∠ADC-∠CDO,可判斷△AOD為直角三角形;
(3)當(dāng)△AOD是以O(shè)D為底邊的等腰三角形時(shí),∠AOD=∠ADO=∠ADC-60°=α-60°,根據(jù)∠AOB+∠BOC+∠COD+∠AOD=360°,列方程求α;
(4)有一定的開放性,要找到變化中的不變量才能有效解決問題.
解答 解:(1)∵將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,
∴△ADC≌△BOC,∠OCD=60°,
∴OC=OD,
∴△COD是等邊三角形;
(2)△AOD為直角三角形;
∵△COD是等邊三角形;
∴∠ODC=60°,
∵∠ADC=∠BOC=α=150°,
∴∠ADO=∠ADC-∠CDO=150°-60°=90°,
∴△AOD是直角三角形;
(3)α=125°.
理由:∵△AOD是以O(shè)D為底邊的等腰三角形,
∴∠AOD=∠ADO=∠ADC-60°=α-60°;
∵110°+α+(60°+∠AOD)=360°,
∴110°+α+(60°+α-60°)=360°,
解得α=125°;
(4)①要使AO=AD,需∠AOD=∠ADO,
∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO;
∵∠AOD=190°-α,∠ADO=α-60°,
∴∠OAD=180°-(∠AOD+∠ADO)=50°,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD,
∵190°-α=50°
∴α=140°.
綜上所述:當(dāng)α的度數(shù)為125°,或110°,或140°時(shí),△AOD是等腰三角形.
點(diǎn)評 本題考查了等邊三角形的性質(zhì),全等三角形的性質(zhì),直角三角形的判定,多邊形內(nèi)角和,等腰三角形的判定,熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
x | … | … | |||||
y | … | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com