分析 由BE為角平分線(xiàn),且DE垂直于BA,EC垂直于BC,利用角平分線(xiàn)性質(zhì)得到DE=CE,則AE+DE+AD=(AE+CE)+AD=AC+AD,故可得出結(jié)論.
解答 解:∵∠ACB=90°,
∴EC⊥BC,
又∵BE平分∠ABC,DE⊥AB,
∴DE=CE,∠DBE=∠CBE,
∵∠A=30°
∴AB=2BC,∠DBE=30°,
又∵AC=4$\sqrt{3}$cm,
∴BC=4cm,AB=8cm,
∴AD=BD=4cm,
∴AE+DE=AE+CE=AC=4$\sqrt{3}$cm.
∴AE+DE+AD=(AE+CE)+AD=AC+AD=(4$\sqrt{3}$+4)cm.
故答案為4$\sqrt{3}$+4.
點(diǎn)評(píng) 本題考查了角平分線(xiàn)的性質(zhì),熟知角的平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n-m | B. | m-n | C. | m+n | D. | -m-n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com