二次函數(shù)y=-2x2-4x+1的頂點坐標是
 
,當x
 
時,y隨x的增大而增大.
考點:二次函數(shù)的性質
專題:
分析:把拋物線一般式方程轉化為頂點式方程,求出頂點坐標即可,利用圖象性質的增減性即可求出答案.
解答:解:∵y=-2x2-4x+1=-2(x+1)2+3,
∴二次函數(shù)y=-2x2-4x+1的頂點坐標是 (-1,3),
∵a=-2,開口向下,
∵對稱軸是x=-1,
在對稱軸的右側,y隨x的增大而增大,
∴x≤-1時,y隨x的增大而增大.
故答案為:(-1,3),x≤-1.
點評:考查的知識點是頂點坐標公式和圖象增減性理解和掌握,利用公式即可求出頂點坐標,根據(jù)圖象的開口方向和對稱軸即可分辨出x的取值范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若y2=
x2-1
+
1-x2
x+1
+4,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,D是AB上一點,AB=3AD,DE∥BC,交AC于點E,若△ABC的面積為6,求△BED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

從射線OA的端點O,再引兩條射線OB和OC,使∠AOB=60°,∠BOC=15°,根據(jù)題意畫出圖形,并求出∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知B、C是線段AD上兩點,且CD=
3
2
AB,AC=35mm,BD=44mm,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知反比例函數(shù)y1=
k
x
的圖象與一次函數(shù)y2=-2x+1的圖象交于點A(-1,3)和點B(m,-2).
(1)求k和m;
(2)觀察圖象,直接寫出y1>y2時自變量x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

A,B兩點到點O的距離都等于3cm,則點A,B在( 。
A、⊙O外B、⊙O內
C、⊙O上D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列計算正確的是( 。
A、(-1)0=-1
B、(-1)-1=1
C、3a-2=
3
a2
D、(-x)5÷(-x)-3=x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若2amb4n與a2n-3b8的和仍是一個單項式,則m與n的值分別是( 。
A、1,2B、2,1
C、1,1D、1,3

查看答案和解析>>

同步練習冊答案