(2008•莆田)如圖表示一艘輪船和一艘快艇沿相同路線從甲港出發(fā)到乙港行駛過程隨時(shí)間變化的圖象,根據(jù)圖象下列結(jié)論錯(cuò)誤的是( )

A.輪船的速度為20千米/小時(shí)
B.快艇的速度為40千米/小時(shí)
C.輪船比快艇先出發(fā)2小時(shí)
D.快艇不能趕上輪船
【答案】分析:觀察圖象,該函數(shù)圖象表示的是路程與之間的函數(shù)關(guān)系,可知輪船出發(fā)4小時(shí)后被快艇追上,在4小時(shí)時(shí)快艇和輪船行駛的路程相等.
解答:解:觀察圖象,可知輪船出發(fā)4小時(shí)后被快艇追上,所以錯(cuò)誤的是第四個(gè)結(jié)論.故選D.
點(diǎn)評:本題考查學(xué)生觀察圖象的能力,需仔細(xì)分析,從中找尋信息.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之四(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長度的速度移動;同時(shí)另一個(gè)動點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市陽新縣太子中學(xué)中考模擬數(shù)學(xué)試卷(3)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長度的速度移動;同時(shí)另一個(gè)動點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省湛江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長度的速度移動;同時(shí)另一個(gè)動點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省莆田市中考數(shù)學(xué)試卷(網(wǎng)絡(luò)卷)(解析版) 題型:解答題

(2008•莆田)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點(diǎn).
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長度的速度移動;同時(shí)另一個(gè)動點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點(diǎn)M,使MQ+MC有最小值?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.(注:拋物線y=ax2+bx+c的對稱軸為x=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省莆田市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•莆田)如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過點(diǎn)P作直線l⊥x軸于點(diǎn)F,交拋物線c1點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動時(shí),求線段PE長的最大值;
(3)當(dāng)PE為最大值時(shí),把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應(yīng)向右平移幾個(gè)單位長度可得到拋物線c2?

查看答案和解析>>

同步練習(xí)冊答案