【題目】平行四邊形ABCD中,若∠A∶∠B=1∶3,那么∠A= , ∠B= , ∠C= , ∠D=.

【答案】45°;135°;45°;135°
【解析】根據(jù)平行四邊形的性質(zhì):對角相等,鄰角互補來解答.∠A與∠B是鄰角,度數(shù)和應(yīng)為180°.又從題干中得知,∠A∶∠B=1∶3,所以不難算出∠A=45°,∠B=135°.又因為平行四邊形對角相等,所以,∠C=∠A=45°,∠D=∠B=135°.根據(jù)平行四邊形的性質(zhì):對角相等,鄰角互補來解答.∠A與∠B是鄰角,度數(shù)和應(yīng)為180°,再結(jié)合已知條件可求四個內(nèi)角的度數(shù)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016貴州省畢節(jié)市第26題)如圖,在ABC中,D為AC上一點,且CD=CB,以BC為直徑作O,交BD于點E,連接CE,過D作DFAB于點F,BCD=2ABD.

(1)、求證:AB是O的切線;(2)、若A=60°,DF=,求O的直徑BC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山東省聊城市第24題)如圖,以RtABC的直角邊AB為直徑作O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交O于點F,點F恰好落在弧AB的中點,連接AF并延長與CB的延長線相交于點G,連接OF.

(1)求證:OF=BG;

(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ab,c為有理數(shù),且它們在數(shù)軸上的位置如圖所示.

(1)試判斷a,bc的正負性;

(2)在數(shù)軸上標出a,b,c的相反數(shù)的位置;

(3)根據(jù)數(shù)軸化簡:

|a|_______;|b|____;

|c|____;|a|_______;

|b|____|c|____

(4)|a|5.5,|b|2.5|c|5,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形,探究并觀察下列問題。

1)在第4個圖中,共有白色瓷磚 塊;在第個圖中,共有白色瓷磚 塊;

2)在第4個圖中,共有瓷磚 塊;在第個圖中,共有瓷磚 塊;

3)如果每塊黑瓷磚4元,白瓷磚3元,鋪設(shè)當(dāng)時,共需花多少錢購買瓷磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙A的半徑AB長是5,點CAB上,且AC3,如果⊙C與⊙A有公共點,那么⊙C的半徑長r的取值范圍是( 。

A. r≥2 B. r≤8 C. 2r8 D. 2≤r≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)0.125×(﹣7)×8
(2)﹣32﹣(﹣8)×(﹣1)5÷(﹣1)4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)形結(jié)合是一種重要的數(shù)學(xué)方法,如在化簡時,當(dāng)在數(shù)軸上位于原點的右側(cè)時,;當(dāng)在數(shù)軸上位于原點時,;當(dāng)在數(shù)軸上位于原點的左側(cè)時,.當(dāng)三個數(shù)在數(shù)軸上的位置如圖所示,試用這種方法解決下列問題,

(1)當(dāng)

(2)當(dāng)

(3)請根據(jù)三個數(shù)在數(shù)軸上的位置,

(4)請根據(jù)三個數(shù)在數(shù)軸上的位置,化簡:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關(guān)于x軸對稱的圖形△A1B1C1;

2)求出A1,B1,C1三點坐標;

3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案