如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=3,那么BC=   
【答案】分析:由AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,根據(jù)垂徑定理可知M、N為AB、AC的中點(diǎn),線段MN為△ABC的中位線,根據(jù)中位線定理可知BC=2MN.
解答:解:∵AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,
∴M、N為AB、AC的中點(diǎn),即線段MN為△ABC的中位線,
∴BC=2MN=6.
故答案為:6.
點(diǎn)評:本題考查了垂徑定理,三角形的中位線定理的運(yùn)用.關(guān)鍵是由垂徑定理得出兩個中點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=3,那么BC=
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果BC=6,那么MN=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=3,那么BC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=3.5,那么BC的長度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB、AC都是圓O的弦,OM⊥AB,ON⊥AC,垂足分別為M、N,如果MN=3,那么BC=_________.

 

查看答案和解析>>

同步練習(xí)冊答案