在△ABC中,AB=AC,D為BC的中點,四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點O,四邊形ADCE的面積為16
3
,CD=4,求∠AOD的度數(shù);
(3)當(dāng)△ABC滿足什么條件時,矩形ADCE是正方形,并說明理由.
考點:矩形的判定,平行四邊形的性質(zhì),正方形的判定
專題:
分析:(1)已知四邊形ABDE是平行四邊形,只需證得它的一個內(nèi)角是直角即可;在等腰△ABC中,AD是底邊的中線,根據(jù)等腰三角形三線合一的性質(zhì)即可證得∠ADC是直角,由此得證;
(2)根據(jù)矩形的性質(zhì)得出AD的長度,進(jìn)而得出∠DAC=30°即可求出答案;
(3)當(dāng)滿足條件AC=BC,證明CD⊥AB且相等即可.
解答:證明:(1)∵四邊形ABDE是平行四邊形,
∴AE∥BC,AB=DE,AE=BD.
∵D為BC中點,
∴CD=BD.
∴CD∥AE,CD=AE.
∴四邊形ADCE是平行四邊形.
∵AB=AC,D為BC中點,
∴AD⊥BC,即∠ADC=90°,
∴平行四邊形ADCE是矩形;

(2)解:∵平行四邊形ADCE是矩形,四邊形ADCE的面積為16
3
,CD=4,
∴AD•CD=4AD=16
3
,DO=AO=CO=EO,
解得:AD=4
3
,
∴tan∠DAC=
CD
AD
=
4
4
3
=
3
3

∴∠DAC=30°,
∴∠ODA=30°,
∴∠AOD=120°.

(3)當(dāng)滿足條件AC=BC.
證明:∵AC=BC,D為AB中點,
∴CD⊥AB(三線合一的性質(zhì)),即∠ADC=90°.
∵四邊形BCED為平行四邊形,四邊形ADCE為平行四邊形,
∴DE=BC=AC,∠AFD=∠ACB=90°.
∴四邊形ADCE為正方形.(對角線互相垂直且相等的四邊形是正方形)
點評:本題主要考查正方形的判定、菱形的判定與性質(zhì)和勾股定理等知識點,此題是道綜合體,有一定的難度,解答的關(guān)鍵還是要能熟練掌握各種四邊形的基本性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A在雙曲線y=
4
x
上,點B在雙曲線y=
k
x
(k≠0)上,AB∥x軸,分別過點A、B向x軸作垂線,垂足分別為D、C,若矩形ABCD的面積是8,則k的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列圖形中,不是中心對稱圖形的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圓柱的底面半徑為1,高為2,則該圓柱體的表面積為( 。
A、πB、2πC、4πD、6π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若兩個不同的關(guān)于x的方程x2+x+a=0與x2+ax+1=0有一個共同的實數(shù)根,求a的值及這兩個方程的公共實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程組:
5x-2y=1
6x+y=8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=-1求該拋物線與x軸的交點坐標(biāo);
(2)若a=
1
3
,c=2+b且拋物線在-2≤x≤2區(qū)間上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在實數(shù)x,使得相應(yīng)的y的值為1,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD=BC,∠C=∠D,求證:△ABD≌△BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=DC,AC=DB,AC與BD交于點O,求證:
(1)△ABC≌△DCB;
(2)OA=OD;
(3)∠ABD=∠DCA.

查看答案和解析>>

同步練習(xí)冊答案