【題目】今年學校舉行足球聯(lián)賽,在第一階段的比賽中,每隊都進行了8場比賽,小虎足球隊勝了4場,平2場,負2場,得14分;小豹足球隊勝了6場,平1場,負1場,得19分.已知,記分規(guī)則中,負1場得0分.
(1)求勝1場、平1場各得多少分?
(2)足球聯(lián)賽結束后,小獅足球隊共參加了17場比賽,得了24分,且踢平場數(shù)是所勝場數(shù)的正整數(shù)倍,請你想一想,小獅足球隊所負場數(shù)有______種可能性.
【答案】(1)勝1場得3分,平1場得1分;(2)2
【解析】
(1)設勝1場得x分,平1場得y分,根據(jù)題意得到二元一次方程組即可求解;
(2)設小獅足球隊勝a場,平na場,負b場(a,n,b均是正整數(shù)),根據(jù)題意得到方程組,化簡得到關于a,b的二元一次方程,求出其正整數(shù)解,再找到符合題意的即可求解.
解:(1)設勝1場得x分,平1場得y分
由題意得
解之得
答:勝1場得3分,平1場得1分
(2)設小獅足球隊勝a場,平na場,負b場(a,n,b均是正整數(shù)),
根據(jù)題意得,
合并得2a-b=7
求得其正整數(shù)解為:,,,,
當時,平場數(shù)為12,符合題意;
當時,平場數(shù)為9,不符合題意;
當時,平場數(shù)為6,符合題意;
當時,平場數(shù)為3,不符合題意;
當時,平場數(shù)為0,不符合題意;
故負場數(shù)有2種可能性,
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時間?
(2)求線段AB對應的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時時離目的地多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①②,的兩邊分別平行.
(1)在圖①中,與有什么數(shù)量關系?為什么?
(2)在圖②中,與有什么數(shù)量關系?為什么?
(3)由(1)(2)你能得出什么結論?用一句話概括你得到的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC是菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度向右平移,設直線l與菱形OABC的兩邊分別交于點M,N(點M在點N的上方),若△OMN的面積為S,直線l的運動時間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2010年春季以來,我國西南地區(qū)遭受了嚴重的旱情,某校學生會自發(fā)組織了“保護水資源從我做起”的活動.同學們采取問卷調查的方式,隨機調查了本校150名同學家庭月人均用水量和節(jié)水措施情況.以下是根據(jù)調查結果作出的統(tǒng)計圖的一部分.
請根據(jù)以上信息解答問題:
(1)補全圖1和圖2;
(2)如果全校學生家庭總人數(shù)約為3 000人,根據(jù)這150名同學家庭月人均用水量,估計全校學生家庭月用水總量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班在一次班會課上,就“遇見路人摔倒后如何處理”的主題進行討論,并對全班 50 名學生的處理方式進行統(tǒng)計,得出相關統(tǒng)計表和統(tǒng)計圖.
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計表中的 m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)若該校有 2000 名學生,請據(jù)此估計該校學生采取“馬上救助”方式的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,直線a∥直線b,點A、D在直線a上,點B、C在直線b上,連接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面積_______△BDC的面積(填“>”、“=”或“<”).
(2)如圖2,已知△ABC,過點A有一條線段,將△ABC的面積平分,且交BC于點D,則 .
(3)如圖3,已知四邊形ABCD,請過點D作一條線段DG將四邊形ABCD面積平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MO、NO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點M.
(1)求拋物線的表達式;
(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標;
(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A、N為頂點的三角形與△MAO相似(不包括全等)?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com