【題目】(1)根據(jù)下列敘述填依據(jù):
已知:如圖①,AB∥CD,∠B+∠BFE=180°,求∠B+∠BFD+∠D的度數(shù).
解:因為∠B+∠BFE=180°,
所以AB∥EF( ).
又因為AB∥CD,
所以CD∥EF( ).
所以∠CDF+∠DFE=180°( ).
所以∠B+∠BFD+∠D=∠B+∠BFE+∠DFE+∠D=360°.
(2)根據(jù)以上解答進行探索:如圖②,AB∥EF,∠BDF與∠B,∠F有何數(shù)量關系?并說明理由.
(3)如圖③④,AB∥EF,你能探索出圖③、圖④兩個圖形中,∠BDF與∠B,∠F的數(shù)量關系嗎?請直接寫出結果.
【答案】(1)(1)同旁內(nèi)角互補,兩直線平行;平行于同一直線的兩條直線互相平行;兩直線平行,同旁內(nèi)角互補;(2)∠BDF=∠B+∠F,理由見解析;(3)∠BDF=∠F-∠B.
【解析】試題分析:(1)根據(jù)平行線的性質和判定填空即可;
(2)過點D作AB的平行線DC,根據(jù)兩直線平行,內(nèi)錯角相等證明即可;
(3)與(2)的證明方法類似,可以求出與的數(shù)量關系.
試題解析:因為
所以AB∥EF(同旁內(nèi)角互補,兩直線平行),
因為AB∥CD(已知),
所以CD∥EF(如果兩條直線都與第三條直線平行,那么這兩條直線也平行),
所以 (兩直線平行,同旁內(nèi)角互補),
所以
(2)過點D作AB的平行線DC,
因為AB∥EF,
所以∠B=∠BDC,
因為AB∥EF,
所以CD∥EF,
所以∠F=∠FDC,
所以∠BDF=∠B+∠F
(3)過點D作AB的平行線DC,
根據(jù)平行線的性質可以證明圖③∠BDF+∠B=∠F;圖④∠BDF+∠B=∠F.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線AE是經(jīng)過點A的任一直線,BD⊥AE于D,CE⊥AE于E,若BD>CE,試解答:
(1)AD與CE的大小關系如何?請說明理由;
(2)若BD=5,CE=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某物流公司承接A、B兩種貨物運輸業(yè)務,已知3月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;4月份由于工人工資上漲,運費單價上漲情況為:A貨物運費單價增加了40%,B貨物運費單價上漲到40元/噸;該物流公司4月承接的A種貨物和B種數(shù)量與3月份相同,4月份共收取運費13000元.試求該物流公司月運輸A、B兩種貨物各多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解學生參加體育活動的情況,學校對學生進行隨機抽樣調查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項:A 1.5小時以上;B 1~1.5小時;C 0.5~1小時;D 0.5小時以下.圖1、2是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調查了多少名學生?
(2)在圖1中將選項B的部分補充完整;
(3)若該校有3000名學生,你估計全?赡苡卸嗌倜麑W生平均每天參加體育活動的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應國家要求中小學生每天鍛煉1小時的號召,某校開展了形式多樣的“陽光體育運動”活動,小明對某班同學參加鍛煉的情況進行了統(tǒng)計,并繪制了圖1和圖2的統(tǒng)計圖.請回答下列問題:
(1)該班共有多少名學生?
(2)求圖1中“乒乓球”部分的人數(shù),并在圖1中將“乒乓球”部分的圖形補充完整;
(3)求出扇形統(tǒng)計圖中表示“足球”的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與y軸交于點A,與x軸交于點B,過AB中點D的直線CD交x軸于點C,且經(jīng)過第一象限的點E(6,4).
(1)求A,B兩點的坐標及直線CD的函數(shù)表達式;
(2)連接BE,求△DBE的面積;
(3)連接DO,在坐標平面內(nèi)找一點F,使得以點C,O,F(xiàn)為頂點的三角形與△COD全等,請直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,△ABC是等腰直角三角形,∠BAC=90°,DE是經(jīng)過點A的直線,作BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,我們能得到什么結論?并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=50° ,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)若AB=4,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間,甲、乙兩家商店以同樣價格銷售相同的商品,兩家優(yōu)惠方案分別為:甲店一次性購物中超過200元后的價格部分打七折;乙店一次性購物中超過500元后的價格部分打五折,設商品原價為x元(x≥0),購物應付金額為y元.
(1)求在甲商店購物時y與x之間的函數(shù)關系;
(2)兩種購物方式對應的函數(shù)圖象如圖所示,求交點C的坐標;
(3)根據(jù)圖象,請直接寫出“五一”期間選擇哪家商店購物更優(yōu)惠.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com