如圖,以△ABC的邊AB為直徑作⊙O交BC于D,過D作⊙O的切線交AC于E,要使得DE⊥AC,則△ABC的邊必須滿足的條件是________.

AC=AB
分析:連接OD,則OD⊥BC;要使DE⊥AC,只需OD∥AC,則需∠C=∠ODB,而OD=OB由此即可推出AC=AB.
解答:解:如圖,連接OD,則OD⊥DE;
∵DE⊥AC,
∴OD∥AC,
∴∠C=∠ODB;
∵OD=OB,
∴∠ODB=∠B,
∴∠C=∠B,
∴AC=AB.
故答案為:AC=AB.
點(diǎn)評(píng):此題綜合運(yùn)用了切線的性質(zhì)定理、等邊對(duì)等角、平行線的判定方法和等角對(duì)等邊的性質(zhì)等知識(shí)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當(dāng)∠BAC滿足什么條件時(shí),四邊形ADFE是矩形;
(2)當(dāng)∠BAC滿足什么條件時(shí),平行四邊形ADFE不存在;
(3)當(dāng)△ABC分別滿足什么條件時(shí),平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以△ABC的邊AB為直徑作⊙O,交BC于D點(diǎn),交AC于E點(diǎn),BD=DE
(1)求證:△ABC是等腰三角形;
(2)若E是AC的中點(diǎn),求
BD
的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•峨眉山市二模)如圖,以△ABC的邊AB為直徑作⊙O,BC與⊙O交于D,D是BC的中點(diǎn),過D作DE⊥AC,交AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BD=8,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•黔東南州)如圖,以△ABC的邊BC為直徑作⊙O分別交AB,AC于點(diǎn)F.點(diǎn)E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求證:DM2=DH•DA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以△ABC的邊AB為直徑的⊙O交AC于點(diǎn)D,弦DE∥AB,∠C=∠BAF
(1)求證:BC為⊙O的切線;
(2)若⊙O的半徑為5,AD=2
5
,求DE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案