【題目】我市某化工材料經(jīng)銷(xiāo)商購(gòu)進(jìn)一種化工材料若干千克,成本為每千克30元,物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不低于成本價(jià)且不高于成本價(jià)的2倍,經(jīng)試銷(xiāo)發(fā)現(xiàn),日銷(xiāo)售量(千克)與銷(xiāo)售單價(jià)(元)符合一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)若在銷(xiāo)售過(guò)程中每天還要支付其他費(fèi)用500元,當(dāng)銷(xiāo)售單價(jià)為多少時(shí),該公司日獲利最大?最大獲利是多少元?
【答案】(1) ;(2)銷(xiāo)售單價(jià)為每千克60元時(shí),日獲利最大,最大獲利為1900元.
【解析】
(1)根據(jù)圖象利用待定系數(shù)法,即可求出直線(xiàn)解析式;
(2)利用每件利潤(rùn)×總銷(xiāo)量=總利潤(rùn),進(jìn)而求出二次函數(shù)最值即可.
解:(1)設(shè)一次函數(shù)關(guān)系式為
由圖象可得,當(dāng)時(shí),;時(shí),.
∴,解得
∴與之間的關(guān)系式為
(2)設(shè)該公司日獲利為元,由題意得
∵;
∴拋物線(xiàn)開(kāi)口向下;
∵對(duì)稱(chēng)軸;
∴當(dāng)時(shí),隨著的增大而增大;
∵,
∴時(shí),有最大值;
.
即,銷(xiāo)售單價(jià)為每千克60元時(shí),日獲利最大,最大獲利為1900元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,cm,cm,點(diǎn)從點(diǎn)出發(fā)沿 以2cm/s的速度向終點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿以1 cm/s的速度向終點(diǎn)勻速運(yùn)動(dòng),、中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)幾秒后,點(diǎn)、D的距離是點(diǎn)、的距離的2倍;
(2)幾秒后,PDQ是直角三角形;
(3)在運(yùn)動(dòng)過(guò)程中,經(jīng)過(guò) 秒,以為圓心,為半徑的⊙與對(duì)角線(xiàn)相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)C,D分別在反比例函數(shù)y=(x>0).y=(x>0)的圖象上,頂點(diǎn)A,B在x軸上,連接OC,交DA于點(diǎn)E,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與雙曲線(xiàn)交于兩點(diǎn),與軸交于點(diǎn),已知點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為。
(1)求函數(shù)的表達(dá)式和點(diǎn)坐標(biāo);
(2)觀察圖像,當(dāng)時(shí),直接寫(xiě)出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的與的部分對(duì)應(yīng)值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列結(jié)論:①拋物線(xiàn)的開(kāi)口向上;②拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn);③當(dāng)時(shí),;④3是方程的一個(gè)根;⑤若,是拋物線(xiàn)上兩點(diǎn),則,其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△ADE都是等腰直角三角形,連接CD、BE,CD、BE相交于點(diǎn)O,△BAE可看作是由△CAD順時(shí)針旋轉(zhuǎn)所得.
(1)旋轉(zhuǎn)中心是 ,旋轉(zhuǎn)角度是 ;
(2)判斷CD與BE的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于點(diǎn)C(O,4),與軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(-2,0),拋物線(xiàn)的對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn)D,與直線(xiàn)BC交于點(diǎn)E.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)F是直線(xiàn)BC上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于DE的一條動(dòng)直線(xiàn)Z與直線(xiàn)BC相交于點(diǎn)P,與拋物線(xiàn)相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10.
(1)尺規(guī)作圖:作出將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后所得到的△P′AB(不要求寫(xiě)作法,但需保留作圖痕跡).
(2)求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作、填空)如圖,中,對(duì)角線(xiàn),點(diǎn)是邊上一動(dòng)點(diǎn),連接交于點(diǎn).
(1)若,則的長(zhǎng)為 ;(用含的式子表示,下同)
(2)若,則的長(zhǎng)為 ;
(3)若,則的長(zhǎng)為 ;
……
(猜想、論證)若,請(qǐng)用含,的式子表示,并證明結(jié)論的正確性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com