設(shè)OA=m,⊙O的半徑r=n,且|m-1|+數(shù)學(xué)公式=0,則點(diǎn)A在圓________.

內(nèi)
分析:要確定點(diǎn)與圓的位置關(guān)系,主要確定點(diǎn)與圓心的距離與半徑的大小關(guān)系,本題可由勾股定理等性質(zhì)算出點(diǎn)與圓心的距離d.
則d>r時(shí),點(diǎn)在圓外;
當(dāng)d=r時(shí),點(diǎn)在圓上;
當(dāng)d<r時(shí),點(diǎn)在圓內(nèi).
解答:根據(jù)非負(fù)性的性質(zhì),顯然絕對(duì)值與根號(hào)里都應(yīng)等于0,
從而由得m=1,n=3,所以m<r,即圓心到點(diǎn)A的距離小于半徑,
所以點(diǎn)A在⊙O的內(nèi)部.
點(diǎn)評(píng):本題考查了對(duì)點(diǎn)與圓的位置關(guān)系的判斷.設(shè)點(diǎn)到圓心的距離為d,則當(dāng)d=R時(shí),點(diǎn)在圓上;當(dāng)d>R時(shí),點(diǎn)在圓外;當(dāng)d<R時(shí),點(diǎn)在圓內(nèi).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果拋物線y=-x2+2(m-1)x+m+1與x軸都交于A,B兩點(diǎn),且A點(diǎn)在x軸的正半軸上,B點(diǎn)在x軸的負(fù)半軸上,OA的長是a,OB的長是b.
(1)求m的取值范圍;
(2)若a:b=3:1,求m的值,并寫出此時(shí)拋物線的解析式;
(3)設(shè)(2)中的拋物線與y軸交于點(diǎn)C,拋物線的頂點(diǎn)是M,問:拋物線上是否存在點(diǎn)P,使△PAB的面積等于△BCM面積的8倍?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).Rt△OAB的斜邊OA在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B在第一象限內(nèi),且OB=
3
,∠OBA=90°.以邊OB所在直線折疊Rt△OAB,使點(diǎn)A落在點(diǎn)C處.
(1)求證:△OAC為等邊三角形;
(2)點(diǎn)D在x軸的正半軸上,且點(diǎn)D的坐標(biāo)為(4,0).點(diǎn)P為線段OC上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O重合),連接PA、PD.設(shè)PC=x,△PAD的面積為y,求y與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)x=
1
2
時(shí),過點(diǎn)A作AM⊥PD于點(diǎn)M,若k=
7AM
2PD
,求證:二次函數(shù)y=-2x2-(7k-3
3
)x+
3
k的圖象關(guān)于y軸對(duì)稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C在x軸負(fù)半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求該拋物線的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,求四邊形OAPB的面積;
(3)有兩動(dòng)點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)M以每秒2個(gè)單位長度的速度沿折線OAB按O→A→B的路線運(yùn)動(dòng),點(diǎn)N以每秒4個(gè)單位長度的速度沿折線按O→B→A的路線運(yùn)動(dòng),當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.
①請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②判斷在①的過程中,t為何值時(shí),△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香坊區(qū)二模)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Rt△OAB的直角邊0A在x軸正半軸上,且OA=4,AB=2,將△OAB沿某條直線翻折,使OA與y軸正半軸的OC重合、點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,連接AD交OB于點(diǎn)E.
(1)求AD所在直線的解析式:
(2)連接BD,若動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿射線A0運(yùn)動(dòng),線段AM的垂直平分線交直線AD于點(diǎn)N,交直線BD子Q,設(shè)線段QN的長為y(y≠0),點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,求y與t之問的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,連接MN,當(dāng)t為何值時(shí),直線MN與過D、E、O三點(diǎn)的圓相切,并求出此時(shí)切點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
23
x2+bx+c經(jīng)過點(diǎn)A,B,交正x軸于點(diǎn)D,E是OC上的動(dòng)點(diǎn)(不與C重合)連接EB,過B點(diǎn)作BF⊥BE交y軸與F
(1)求b,c的值及D點(diǎn)的坐標(biāo);
(2)求點(diǎn)E在OC上運(yùn)動(dòng)時(shí),四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
(3)連接EF,BD,設(shè)OE=m,△BEF與△BED的面積之差為S,問:當(dāng)m為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案