(2009•寧德)如圖,AB是⊙O的直徑,AC是弦,若∠ACO=32°,則∠COB的度數(shù)等于    度.
【答案】分析:首先根據(jù)等邊對等角得到∠A=∠ACO,再根據(jù)一條弧所對的圓周角等于它所對的圓心角的一半,即可求得∠COB的度數(shù).
解答:解:∵OA=OC,∠ACO=32°
∴∠A=∠ACO=32°
∴∠COB=2∠A=64°.
點評:綜合運用了等腰三角形的性質(zhì):等邊對等角.以及圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•寧德)如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省天門市麻洋中學中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2009•寧德)如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省福州市第二十中學中考模擬卷(解析版) 題型:解答題

(2009•寧德)如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市延慶縣畢業(yè)考試數(shù)學試卷(解析版) 題型:解答題

(2009•寧德)如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省寧德市中考數(shù)學試卷(解析版) 題型:解答題

(2009•寧德)如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.

查看答案和解析>>

同步練習冊答案