如圖,矩形OABC的兩邊OC、OA分別是x軸和y軸上,過點(diǎn)B的直線切以O(shè)C為直徑的半圓O′于點(diǎn)E,交y軸于點(diǎn)F,連接OE,且已知C(-6,0),F(xiàn)(0,2).
(1)求EF的長;
(2)求經(jīng)過B、F兩點(diǎn)的直線的解析式;
(3)求tan∠EOF的值.

解:(1)由題意知,AO⊥CO,CO是半圓的直徑,
∴FO是半圓的切線,
∵AB是切線,點(diǎn)E是切點(diǎn),
∴EF=OF=2;

(2)已知C(-6,0),設(shè)點(diǎn)B(-6,b),F(xiàn)(0,2),
∴BF直線解析式為:y=,
∵OE⊥BF,
∴O點(diǎn)到直線距離為3,
又∵O′(-3,0),
∴3=
∴b=,
∴B(-6,),
設(shè)E(a,2-),
又∵|OE|=3,

∴a=,
∴E(,),
∴BF直線解析式為:y=把b=代入,得:
y=;

(3)由圖形幾何關(guān)系,作EM垂直于y軸于點(diǎn)M,
∴tan∠EOF===
分析:(1)由題意知FO是圓的切線,則由切線長定理知,EF=OF=2;
(2)由題意設(shè)出直線BF的解析式,由O點(diǎn)到直線距離為3,求得B點(diǎn)的坐標(biāo),設(shè)E(a,2-),由勾股定理求得a的值,進(jìn)而得到直線BF的解析式;
(3)作EM垂直于y軸于點(diǎn)M,由正切的概念求得tan∠EOF的值.
點(diǎn)評(píng):此題主要考查一次函數(shù)的基本性質(zhì)及圓的性質(zhì),直線與圓相切的問題,巧妙設(shè)點(diǎn)從而減少未知量,還考查了學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,把△OAB沿OB翻折,使點(diǎn)A落在點(diǎn)D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點(diǎn)B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點(diǎn),且CM=2OM,N為BC的中點(diǎn),BM與AN交于點(diǎn)E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點(diǎn)F的坐標(biāo);
(2)求過A、F、C三點(diǎn)的拋物線解析式;
(3)在拋物線上是否存在一點(diǎn)P,使得△ACP為以A為直角頂點(diǎn)的直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(diǎn)(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案