把兩塊全等的直角三角形疊放在一起,使三角板的銳角頂點(diǎn)與三角板的斜邊中點(diǎn)重合,其中,,,把三角板固定不動(dòng),讓三角板繞點(diǎn)旋轉(zhuǎn),設(shè)射線與射線相交于點(diǎn),射線與線段相交于點(diǎn)

(1)如圖1,當(dāng)射線經(jīng)過點(diǎn),即點(diǎn)與點(diǎn)重合時(shí),易證.此時(shí),      ;將三角板由圖1所示的位置繞點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為.其中,問的值是否改變?答:      (填“會(huì)”或“不會(huì)”);若改變,的值為      (不必說明理由);
(2)在(1)的條件下,設(shè),兩塊三角板重疊面積為,求的函數(shù)關(guān)系式.(圖2,圖3供解題用)
(1)8,不會(huì);(2)當(dāng)時(shí),
當(dāng)時(shí),.
試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的性質(zhì)求解即可;
(2)情形1:當(dāng)時(shí),,即,此時(shí)兩三角板重疊部分為四邊形,過,,根據(jù)三角形的面積公式求解即可;情形2:當(dāng)時(shí),時(shí),即,此時(shí)兩三角板重疊部分為,由于,,易證:,根據(jù)相似三角形的性質(zhì)求解即可.
(1)由題意得8;將三角板旋轉(zhuǎn)后的值不會(huì)改變;

(2)情形1:當(dāng)時(shí),,即,此時(shí)兩三角板重疊部分為四邊形,過,,

由(2)知:
于是
情形2:當(dāng)時(shí),時(shí),即,此時(shí)兩三角板重疊部分為,

由于,易證:,
,解得

于是 
綜上所述,當(dāng)時(shí),
當(dāng)時(shí),.
本題涉及了旋轉(zhuǎn)問題的綜合題,此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

給出定義,若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)(1)如圖1,大圓面積為5,請(qǐng)應(yīng)用旋轉(zhuǎn)知識(shí),畫圖說明空白部分的面積.
(2)如圖2,大正方形邊長為9個(gè)單位長,陰影部分的寬為1個(gè)單位長,請(qǐng)應(yīng)用平移知識(shí),畫圖說明空白部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中,既是軸對(duì)稱圖形也是中心對(duì)稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

風(fēng)車應(yīng)做成中心對(duì)稱圖形,并且不是軸對(duì)稱圖形,才能在風(fēng)口處平穩(wěn)旋轉(zhuǎn).現(xiàn)有一長條矩形硬紙板(其中心有一個(gè)小孔)和兩張全等的矩形薄紙片,將紙片粘到硬紙板上,做成一個(gè)能繞著小孔平穩(wěn)旋轉(zhuǎn)的風(fēng)車.正確的粘合方法是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=6,BC=8,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1,若△CBC1的面積為16,求△ABA1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)的過程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,直接寫出線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=15,AD=12.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請(qǐng)你幫助解決.

(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2)求FB的長度
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請(qǐng)問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計(jì))請(qǐng)你通過計(jì)算說服小紅。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形至少旋轉(zhuǎn)      度才能與自身重合。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列交通標(biāo)志既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案