先化簡再求值:
3x-3
x2-1
÷
3x
x+1
-
1
x-1
,從不等式( -
1
2
)
-1
<x<tan60°解中選一個你喜歡的數(shù)代入,求原分式的值.
分析:先把第一個分式的分子和分母因式分解和除法轉(zhuǎn)化為乘法得到原式=
3(x-1)
(x+1)(x-1)
x+1
3x
-
1
x-1
,約分后得
1
x
-
1
x-1
,再通分得到原式=-
1
x2-x
,由于( -
1
2
)
-1
<x<tan60°,即-2<x<
3
,并且滿足條件的x的值不能為-1,1,0,則x可以取
1
2
,然后把x=
1
2
代入計算即可.
解答:解:原式=
3(x-1)
(x+1)(x-1)
x+1
3x
-
1
x-1

=
1
x
-
1
x-1

=
(x-1)-x
x(x-1)

=-
1
x2-x
,
( -
1
2
)
-1
<x<tan60°,
∴-2<x<
3
,
∵原分式有意義x不能取±1,0,
∴x可取
1
2
,
當x=
1
2
時,原式=-
1
(
1
2
)
2
-
1
2
=4.
點評:本題考查了分式的化簡求值:先把各分式的分子或分母因式分解,再進行分式的乘除運算,然后進行分式的加減運算得到最簡分式或整式,再把滿足條件的字母的值代入計算得到對應的分式的值;有括號先算括號.也考查了負整數(shù)指數(shù)冪的意義、特殊角的三角函數(shù)值以及估算無理數(shù)的大小.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)計算:|-6|-(1-
3
0+(-3)2
(2)先化簡再求值:
3x-3
x2-1
÷
3x
x+1
-
1
x-1
,其中x=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡再求值:
3x-3
x2-1
÷
3x
x+1
-
1
x-1
,并從不等式組的解中選一個你喜歡的數(shù)代入,求原分式的值
x-3(x-2)≥2
4x-2<5x+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡再求值:
3
x-4
-
24
x2-16
,其中x=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)計算:
8
+(-1)3-2×
2
2
+(π-1)0
(2)先化簡再求值:
3x-3
x2-1
÷
3x
x+1
-
1
x-1
,其中x=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡再求值:3x-[x-y-(y2-x2)-2y2]-(-2x2+y2+y),其中x=-1,y=-
12

查看答案和解析>>

同步練習冊答案