【題目】某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

【答案】解:設(shè)每千克水果應(yīng)漲價(jià)x元,
依題意得方程:(500﹣20x)(10+x)=6000,
整理,得x2﹣15x+50=0,
解這個(gè)方程,得x1=5,x2=10.
要使顧客得到實(shí)惠,應(yīng)取x=5.
答:每千克水果應(yīng)漲價(jià)5元
【解析】設(shè)每千克水果應(yīng)漲價(jià)x元,得出日銷(xiāo)售量將減少20x千克,再由盈利額=每千克盈利×日銷(xiāo)售量,依題意得方程求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解一元二次方程x2﹣4x=5時(shí),此方程可變形為(
A.(x+2)2=1
B.(x﹣2)2=1
C.(x+2)2=9
D.(x﹣2)2=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)用8塊棱長(zhǎng)為3 cm的小正方體,搭建了一個(gè)如圖所示的積木,下列說(shuō)法中不正確的是( )

A. 從左面看這個(gè)積木時(shí),看到的圖形面積是27cm2

B. 從正面看這個(gè)積木時(shí),看到的圖形面積是54cm2

C. 從上面看這個(gè)積木時(shí),看到的圖形面積是45cm2

D. 分別從正面、左面、上面看這個(gè)積木時(shí),看到的圖形面積都是72cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.將圖形F沿x軸向右平移1格得圖形F1 , 稱(chēng)為作1次P變換;將圖形F沿y軸翻折得圖形F2 , 稱(chēng)為作1次Q變換;將圖形F繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得圖形F3 , 稱(chēng)為作1次R變換.規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再作1次Q變換;Rn變換表示作n次R變換.
解答下列問(wèn)題:

(1)作R4變換相當(dāng)于至少作次Q變換;
(2)請(qǐng)?jiān)趫D2中畫(huà)出圖形F作R2007變換后得到的圖形F4;
(3)PQ變換與QP變換是否是相同的變換?請(qǐng)?jiān)趫D3中畫(huà)出PQ變換后得到的圖形F5 , 在圖4中畫(huà)出QP變換后得到的圖形F6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、△BCE、△ACF,當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?(
A.AB=AC
B.∠BAC=90°
C.∠BAC=120°
D.∠BAC=150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組數(shù)中,是勾股數(shù)的是( )

A. 14,3639

B. 8,24,25

C. 8,15,17

D. 1020,26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠α=35°30′,則∠α的余角為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,在中,已知,,點(diǎn)是線段上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)是線段上的動(dòng)點(diǎn),連接,若在點(diǎn)、點(diǎn)的運(yùn)動(dòng)過(guò)程中,始終保證

(1)求證:;

(2)當(dāng)以點(diǎn)為圓心,以為半徑的圓與相切時(shí),求的長(zhǎng);

(3)探究:在點(diǎn)、點(diǎn)的運(yùn)動(dòng)過(guò)程中,可能為等腰三角形嗎?若能,求出的長(zhǎng);若不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊BD延長(zhǎng)線上一點(diǎn),連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△ACE;
(2)若∠B=30°,AB=26,BD=10,求平行四邊形ABDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案