已知:在菱形ABCD中,AE⊥BC,垂足為點(diǎn)E,AB=13cm,對角線AC=10cm,那么AE=
120
13
120
13
cm.
分析:根據(jù)菱形的性質(zhì)得出AO、AB的長,在RT△ABO中求出BO,進(jìn)而得出BD,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.
解答:解:由題意得:AC=10cm,AB=13cm,
則AO=
1
2
AC=5cm,
在RT△ABO中,BO=
AB2-AO2
=12cm,
∴BD=24cm,
又∵SABCD=BC×AE=
1
2
AC×BD,
∴可求得AE=
120
13
cm.
故答案為:
120
13
點(diǎn)評:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在菱形ABCD中,O是對角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長,與DC交于點(diǎn)R,與BC的延長線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在菱形ABCD中,∠BAD=60°,把它放在直角坐標(biāo)系中,使AD邊在y軸上,點(diǎn)C的坐標(biāo)為(2
3
,8

(1)畫出符合題目條件的菱形與直角坐標(biāo)系.
(2)寫出A,B兩點(diǎn)的坐標(biāo).
(3)設(shè)菱形ABCD的對角線的交點(diǎn)為P,問:在y軸上是否存在一點(diǎn)F,使得點(diǎn)P與點(diǎn)F關(guān)于菱形ABCD的某條邊所在的直線對稱,如果存在,寫出點(diǎn)F的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中嘉祥外國語學(xué)校九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

已知:在菱形ABCD中,O是對角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長,與DC交于點(diǎn)R,與BC的延長線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第19章《相似形》中考題集(14):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

已知:在菱形ABCD中,O是對角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:OP=OQ;
(2)如圖乙,連接AO并延長,與DC交于點(diǎn)R,與BC的延長線交于點(diǎn)S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長.

查看答案和解析>>

同步練習(xí)冊答案