分析 (1)易證四邊形BFDE是平行四邊形,再結(jié)合已知條件證明鄰邊EB=ED即可得到平行四邊形BFDE是菱形;
(2)設(shè)BF=x,所以可得DE=BE=x,AE=8-x,在Rt△ADE中,由勾股定理可得AE2=DE2+AD2,求出x的值即可.
解答 (1)證明:∵DE∥BC,DF∥AB,
∴四邊形BFDE是平行四邊形.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
∵DE∥BC,
∴∠CBD=∠EDB.
∴∠ABD=∠EDB.
∴EB=ED.
∴平行四邊形BFDE是菱形;
(2)解:∵ED∥BF,∠C=90°,
∴∠ADE=90°.
設(shè)BF=x,
∴DE=BE=x.
∴AE=8-x.
在Rt△ADE中,AE2=DE2+AD2
∴(8-x)2=x2+42
解得x=3,
∴BF=3.
點(diǎn)評(píng) 本題考查了菱形的判定和性質(zhì)、角平分線的定義、平行線的性質(zhì)以及勾股定理的運(yùn)用,熟記菱形的各種判定方法和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 若兩個(gè)實(shí)數(shù)相等,則這兩個(gè)實(shí)數(shù)的平方相等 | |
B. | 若兩個(gè)角是直角,則這兩個(gè)角相等 | |
C. | 若AB=5,BC=4,CA=3,則△ABC是直角三角形 | |
D. | 若一個(gè)四邊形的對(duì)角線互相垂直且平分,則這個(gè)四邊形是菱形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com