如圖,△ABC中,AE是∠BAC的角平分線,AD是BC邊上的高線,且∠B=50°,∠C=60°,則∠EAD的度數(shù)


  1. A.
    35°
  2. B.
  3. C.
    15°
  4. D.
    25°
B
分析:利用三角形的內(nèi)角和是180°可得∠BAC的度數(shù);AE是∠BAC的角平分線,可得∠EAC的度數(shù);利用AD是高可得∠ADC=90°,那么可求得∠DAC度數(shù),那么∠EAD=∠EAC-∠DAC.
解答:∵∠B=50°,∠C=60°,
∴∠BAC=180°-∠B-∠C=70°,
∵AE是∠BAC的角平分線,
∴∠EAC=∠BAC=35°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=90°-∠C=30°,
∴∠EAD=∠EAC-∠DAC=5°.
故選B.
點(diǎn)評:關(guān)鍵是得到和所求角有關(guān)的角的度數(shù);用到的知識點(diǎn)為:三角形的內(nèi)角和是180°;角平分線把一個角分成相等的兩個角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案