【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別交于,兩點(diǎn),且點(diǎn),點(diǎn)軸正半軸上運(yùn)動(dòng),過(guò)點(diǎn)作平行于軸的直線

1)求的值和點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),直線與直線交于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),求反比例函數(shù)的解析式;

3)當(dāng)時(shí),若直線與直線和(2)反比例函數(shù)的圖象分別交于點(diǎn),,當(dāng)間距離大于等于2時(shí),求的取值范圍.

【答案】1;(2;的取值范圍是:

【解析】

1)把代入得出的值,進(jìn)而得出點(diǎn)坐標(biāo);

2)當(dāng)時(shí),將代入,進(jìn)而得出的值,求出點(diǎn)坐標(biāo)得出反比例函數(shù)的解析式;

3)可得,當(dāng)向下運(yùn)動(dòng)但是不超過(guò)軸時(shí),符合要求,進(jìn)而得出的取值范圍.

解:(1)∵直線 經(jīng)過(guò)點(diǎn),

,

2)當(dāng)時(shí),將代入

得,

代入得,,

;

3)當(dāng)時(shí),,而,

如圖,,當(dāng)向下運(yùn)動(dòng)但是不超過(guò)軸時(shí),符合要求,

的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形的一條對(duì)角線將這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),那么我們將這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線.

(1)如圖1,四邊形ABCD中,∠DAB100°,∠DCB130°,對(duì)角線AC平分∠DAB,求證:AC是四邊形ABCD的相似對(duì)角線;

(2)如圖2,直線分別與x,y軸相交于A,B兩點(diǎn),P為反比例函數(shù)y(k0)上的點(diǎn),若AO是四邊形ABOP的相似對(duì)角線,求反比例函數(shù)的解析式;

(3)如圖3,AC是四邊形ABCD的相似對(duì)角線,點(diǎn)C的坐標(biāo)為(3,1),ACx軸,∠BCA=∠DCA30°,連接BD,△BCD的面積為.過(guò)A,C兩點(diǎn)的拋物線yax2+bx+c(a0)x軸交于EF兩點(diǎn),記|m|AC+1,若直線ymx與拋物線恰好有3個(gè)交點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,612日為端午節(jié).在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷(xiāo)售情況.請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.

1)小華的問(wèn)題解答:    

2)小明的問(wèn)題解答:    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC12cm,BC16cm,DE分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為4cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),以點(diǎn)EP、Q為頂點(diǎn)的三角形與△ADE相似?

2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

如圖1,在等邊△ABC中,AB9,⊙C半徑為3,P為圓上一動(dòng)點(diǎn),連結(jié)AP,BP,求AP+BP的最小值

(1)嘗試解決:

為了解決這個(gè)問(wèn)題,下面給出一種解題思路,通過(guò)構(gòu)造一對(duì)相似三角形,將BP轉(zhuǎn)化為某一條線段長(zhǎng),具體方法如下:(請(qǐng)把下面的過(guò)程填寫(xiě)完整)

如圖2,連結(jié)CP,在CB上取點(diǎn)D,使CD1,則有

又∵∠PCD=∠   

   ∽△   

PDBP

AP+BPAP+PD

∴當(dāng)A,P,D三點(diǎn)共線時(shí),AP+PD取到最小值

請(qǐng)你完成余下的思考,并直接寫(xiě)出答案:AP+BP的最小值為   

(2)自主探索:

如圖3,矩形ABCD中,BC6AB8,P為矩形內(nèi)部一點(diǎn),且PB4,則AP+PC的最小值為   (請(qǐng)?jiān)趫D3中添加相應(yīng)的輔助線)

(3)拓展延伸:

如圖4,在扇形COD中,O為圓心,∠COD120°OC4OA2,OB3,點(diǎn)P上一點(diǎn),求2PA+PB的最小值,畫(huà)出示意圖并寫(xiě)出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在RtABC中,∠C90°,AC3,BC4

1)試在圖中作出△ABCA為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;

2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫(huà)出直角坐標(biāo)系,并直接寫(xiě)出A、C兩點(diǎn)的坐標(biāo);

3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的圖形△A2B2C2,并直接寫(xiě)出點(diǎn)A2、B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)BC,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,點(diǎn)O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC、AB相交于點(diǎn)DE,連接AD,已知∠CAD=∠B.

1)求證:AD是⊙O的切線;

2)若∠B30°AC,求劣弧BD與弦BD所圍陰影圖形的面積;

3)若AC4BD6,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 y =-x2+3x +4 x軸負(fù)半軸相交于A點(diǎn),正半軸相交于B點(diǎn),與 y 軸相交于C 點(diǎn).

1)已知點(diǎn)Dmm+1)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線 BC 對(duì)稱(chēng)的點(diǎn)的坐標(biāo);

2)在(1)的條件下,連接BD,點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案