【題目】若拋物線yx23x+cy軸的交點為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點為(﹣10),(3,0

C. x1時,y有最大值為0

D. 拋物線的對稱軸是直線x

【答案】D

【解析】

A、由a=1>0,可得出拋物線開口向上,A選項錯誤;

B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(2,0),B選項錯誤;

C、由拋物線開口向上,可得出y無最大值,C選項錯誤;

D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.

綜上即可得出結(jié)論.

解:A、a=1>0,

∴拋物線開口向上,A選項錯誤;

B、∵拋物線y=x2-3x+cy軸的交點為(0,2),

c=2,

∴拋物線的解析式為y=x2-3x+2.

y=0時,有x2-3x+2=0,

解得:x1=1,x2=2,

∴拋物線與x軸的交點為(1,0)、(2,0),B選項錯誤;

C、∵拋物線開口向上,

y無最大值,C選項錯誤;

D、∵拋物線的解析式為y=x2-3x+2,

∴拋物線的對稱軸為直線x=-=-=,D選項正確.

故選:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某班同學上學期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學生捐款額的平均數(shù)和中位數(shù);

(2)試問捐款額多于15元的學生數(shù)是全班人數(shù)的百分之幾?

(3)已知這筆捐款是按3:5:4的比例分別捐給災區(qū)民眾、重病學生、孤老病者三種被資助的對象,問該班捐給重病學生是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知OA,OB是⊙O的半徑,且OAOB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.

(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大;

(2)如圖②,點POA的延長線上,若∠OBQ=65°,求∠AQE的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過點A(3,0),C(﹣1,0).

(1)求二次函數(shù)的解析式;

(2)如圖,點P是二次函數(shù)圖象的對稱軸上的一個動點,二次函數(shù)的圖象與y軸交于點B,當PB+PC最小時,求點P的坐標;

(3)在第一象限內(nèi)的拋物線上有一點Q,當△QAB的面積最大時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,點P在線段AB上以3 cm/s的速度,由AB運動,同時點Q在線段BD上由BD運動.

(1)若點Q的運動速度與點P的運動速度相等,當運動時間t=1(s),△ACP與△BPQ是否全等?說明理由,并直接判斷此時線段PC和線段PQ的位置關(guān)系;

(2)將 “AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA”,其他條件不變.若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能使△ACP與△BPQ全等.

(3)在圖2的基礎(chǔ)上延長AC,BD交于點E,使C,D分別是AE,BD中點,若點Q以(2)中的運動速度從點B出發(fā),點P以原來速度從點A同時出發(fā),都逆時針沿△ABE三邊運動,求出經(jīng)過多長時間點P與點Q第一次相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,BDCE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.

求證:(1)∠ECD=∠EDC;

(2)OC=OD;

(3)OE是線段CD的垂直平分線.

查看答案和解析>>

同步練習冊答案