【題目】甲、乙、丙三個(gè)家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是8年,經(jīng)質(zhì)量檢測部門對這三家銷售的產(chǎn)品的使用壽命進(jìn)行跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:年):
甲廠:4,5,5,5,5,7,9,12,13,15;
乙廠:6,6,8,8,8,9,10,12,14,15;
丙廠:4,4,4,6,7,9,13,15,16,16.
請回答下列問題:
(1)分別寫出以上三組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)這三個(gè)廠家的推銷廣告分別用了哪一種表示集中趨勢的特征數(shù)?
(3)如果你是顧客,宜選購哪家工廠的產(chǎn)品?為什么?
【答案】(1)甲:平均數(shù)為8,眾數(shù)為5,中位數(shù)為6;乙:平均數(shù)為9.6,眾數(shù)為8,中位數(shù)為8.5;丙:平均數(shù)為9.4,眾數(shù)為4,中位數(shù)為8;(2)甲廠用平均數(shù)、乙廠用眾數(shù)、丙廠用中位數(shù);(3)選購乙廠的,平均水平高.
【解析】
(1)平均數(shù)就是把這組數(shù)據(jù)加起來的和除以這組數(shù)據(jù)的總數(shù),眾數(shù)就是一堆數(shù)中出現(xiàn)次數(shù)最多的數(shù),中位數(shù),就是一組數(shù)按從小到大的順序排列,中間位置的那個(gè)數(shù),如果有偶數(shù)個(gè)數(shù),那就是中間的兩個(gè)數(shù)的平均數(shù);
(2)一組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)從不同角度表示這種數(shù)據(jù)集中趨勢.
由(1)的結(jié)果容易回答(2),甲廠、乙廠、丙廠,分別利用了平均數(shù)、眾數(shù)、中位數(shù)進(jìn)行廣告推銷,顧客在選購產(chǎn)品時(shí),一般以平均數(shù)為依據(jù).
(3)根據(jù)平均數(shù)大的進(jìn)行選擇.
(1)甲廠:平均數(shù)為 (4+5+5+5+5+7+9+12+13+15)=8,眾數(shù)為5,中位數(shù)為6;
乙廠:平均數(shù)為 (6+6+8+8+8+9+10+12+14+15)=9.6,眾數(shù)為8,中位數(shù)為8.5;
丙廠:平均數(shù)為 (4+4+4+6+7+9+13+15+16+16)=9.4,眾數(shù)為4,中位數(shù)為8;
(2)甲廠用的是平均數(shù),乙廠用的是眾數(shù),丙廠用的是中位數(shù);
(3)平均數(shù):乙大于丙大于甲;眾數(shù):乙大于甲大于丙;中位數(shù):乙大于丙大于甲,顧客在選購產(chǎn)品時(shí),一般以平均數(shù)為依據(jù),選平均數(shù)大的廠家的產(chǎn)品,
因此應(yīng)選乙廠的產(chǎn)品.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2 .
(2)求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線OA的解析式為y=x.
(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線l2 , l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線l1上一動(dòng)點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階.下圖是其中的甲、乙兩段臺階路的示意圖.請你用所學(xué)過的有關(guān)統(tǒng)計(jì)知識(平均數(shù)、中位數(shù)、方差和極差)回答下列問題:
(1)兩段臺階路有哪些相同點(diǎn)和不同點(diǎn)?
(2)哪段臺階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.
圖中的數(shù)字表示每一級臺階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s甲2=,數(shù)據(jù)11,15,18,17,10,19的方差s乙2=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列4個(gè)命題: ①方程x2﹣( + )x+ =0的根是 和 .
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD= ,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在y= 的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿足﹣1<x0<1.
上述4個(gè)命題中,真命題的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,其圖象反映的過程是:張強(qiáng)從家去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家,其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象,下列回答正確的是( )
A.張強(qiáng)在體育場鍛煉45分鐘
B.張強(qiáng)家距離體育場是4千米
C.張強(qiáng)從離家到回到家一共用了200分鐘
D.張強(qiáng)從家到體育場的平均速度是10千米/小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y= x﹣2與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過A、C和點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在反比例函數(shù)y= 中,當(dāng)x>0時(shí),y隨x的增大而增大,則二次函數(shù)y=mx2+mx的圖象大致是圖中的( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com