【題目】如圖,已知二次函數(shù)y=﹣x2+2x+3的圖象與x軸相交于點A,B,與y軸相交于點C,連接AC,BC.該函數(shù)在第一象限內(nèi)的圖象上是否存在一點D,使得CB平分∠ACD?若存在,求點D的坐標,若不存在,說明理由.
【答案】存在, .
【解析】
過點C作CE⊥y軸,交拋物線于點E,過點D作DH⊥CE于H,證明∠1=∠2,由tan∠2=tan∠1得 的值,進而設(shè)D(m,﹣m2+2m+3),列出m的方程求得m便可.
存在.理由如下:
如圖,過點C作CE⊥y軸,交拋物線于點E,過點D作DH⊥CE于H,
當x=0時,y=3,則C(0,3),
當y=0時,﹣x2+2x+3=0,
∴x=﹣1或3,則A(﹣1,0),B(3,0),
∴OB=OC=3,
∴∠OCB=∠OBC=∠ECB=45°,
∵∠ACB=∠DCB,
∴∠1=∠2,
所以tan∠2=tan∠1= ,
即
設(shè)D(m,﹣m2+2m+3),
則 ,
解得m1=0(舍去),m2= ,
所以D( ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某外語學(xué)校要在圣誕節(jié)舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學(xué)生的動手能力,學(xué)校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長為42厘米,底面直徑為16厘米.
(1)求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到1度).
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片 (張)與B種規(guī)格的紙片 (張)之間的函數(shù)關(guān)系式及的最大值與最小值;若自己制作時,A,B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年深圳市全市生產(chǎn)總值(GDP)公布,從2011年邁入萬億城市俱樂部之后,繼續(xù)穩(wěn)步增長,位列全國第4位.其中,各區(qū)的GDP如下統(tǒng)計圖,請你依據(jù)圖解答下列問題:
(1)2014年,深圳全市GDP是 億元;
(2)補全條形統(tǒng)計圖;
(3)求出原寶安區(qū)所在扇形的圓心角度數(shù) .
(4)2014年深圳市常住人口約為1000萬人,請你算出2014年深圳市人均GDP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進行如下變換:
(1)如圖①,△DEF沿直線CB向右平移(即點F在線段CB上移動),連接AF,AD,BD,請直接寫出S△ABC與S四邊形AFBD的關(guān)系.
(2)如圖②,當點F平移到線段BC的中點時,若四邊形AFBD為正方形,那么△ABC應(yīng)滿足什么條件?請給出證明.
(3)在(2)的條件下,將△DEF沿DF折疊,點E落在FA的延長線上的點G處,連接CG,請你畫出圖形,并求出sin∠CGF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半徑為4的⊙O的直徑,P是圓上異于A,B的任意一點,∠APB的平分線交⊙O于點 C,連接AC和BC,△ABC的中位線所在的直線與⊙O相交于點E、F,則EF的長是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為方便消費者購物,準備將原來的階梯式自動扶梯改造成斜坡式自動扶梯,如圖,已知原階梯式自動扶梯AB的長為6m,坡角∠ABE=45°,改造后的斜坡自動扶梯坡角∠ACB=15°,求改造后的斜坡式自動扶梯AC的長,(精確到0.1m,參考數(shù)據(jù);sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點分別位于一個池塘的兩端,由于受條件限制無法直接測量A,B間的距離.小明利用學(xué)過的知識,設(shè)計了如下三種測量方法,如圖①、②、③所示(圖中a,b,c表示長度).
(1)請你寫出小明設(shè)計的三種測量方法中AB的長度:
圖①中,AB=______,圖②中,AB=______,圖③中,AB=______;
(2)請你再設(shè)計一種不同于以上三種的測量方法,畫出示意圖(不要求寫畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 兩點的坐標分別為,點分別是直線和x軸上的動點,,點是線段的中點,連接交軸于點;當⊿面積取得最小值時,的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,在Rt△ABC中,∠A=90°,AB=kAC(k>1),D是AB上一點,DE∥BC,則BD,EC的數(shù)量關(guān)系為 .
類比探究
(2)如圖2,將△AED繞著點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a<90°),連接CE,BD,請問(1)中BD,EC的數(shù)量關(guān)系還成立嗎?說明理由
拓展延伸:
(3)如圖3,在(2)的條件下,將△AED繞點A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a>90°).直線BD,CE交于F點,若AC=1,AB=,則當∠ACE=15°時,BFCF的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com