解方程中的合并同類項的依據(jù)和目的是什么?

答案:
解析:

合并的依據(jù)是乘法分配律.合并的目的是把已知方程化成axb(a0)的形式,為下一步系數(shù)化為1,求出x的值做準備,因此合并起到了化簡的作用.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解題:一次數(shù)學(xué)興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學(xué)們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學(xué)生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學(xué)們再觀察觀察,看看這個方程有什么特點?
學(xué)生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學(xué):咦,這不是我們學(xué)過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學(xué)生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學(xué)們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉(zhuǎn)化方法.
全體同學(xué):OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項,得-3x+2x=8-1…③
合并同類項,得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯誤?答:
 
;如果有錯誤,則錯在
 
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按要求完成下面題目:x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即   3x+1=-2x+8…②
移項,得 3x+2x=8-1…③
合并同類項,得    5x=7…④
所以x=
7
5
 …⑤
上述解方程的過程中,是否有錯誤?答:
;如果有錯誤,則錯在
步.如果上述解方程有錯誤,請你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

能使方程左右兩邊相等的未知數(shù)的①
,叫做方程的解.
求方程的解的②
過程
過程
叫做解方程.求方程的解就是將方程變形為③
x=a
x=a
的形式.
等式的兩條性質(zhì)是④
解方程
解方程
的依據(jù).
(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是⑤
等式
等式

(2)等式兩邊都乘或除以同一個⑥
不等于0
不等于0
的數(shù),所得結(jié)果仍是等式.
方程中的某些項⑦
改變符號
改變符號
后,從方程的一邊移到另一邊,這樣的變形叫做⑧
移項
移項

一般地,解一元一次方程的一般步驟:去分母、⑨
去括號
去括號
、移項、⑩
合并同類項
合并同類項
、未知數(shù)的?
系數(shù)
系數(shù)
化為1.以上步驟不是一成不變的,在解方程時要根據(jù)方程的特點靈活運用這些步驟.
去分母和去括號時注意不能漏乘;分數(shù)線既具有除號的作用,又具有括號的作用,當(dāng)分子是多項式時,去分母后,原先的括號要補上;另外,移項時特別注意要改變符號.

查看答案和解析>>

同步練習(xí)冊答案