(2013•昭通)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度數(shù);
(2)求證:AE是⊙O的切線.
分析:(1)根據(jù)“同弧所對的圓周角相等”可以得到∠ADC=∠B=60°;
(2)欲證明AE是⊙O的切線,只需證明BA⊥AE即可.
解答:解:(1)∵∠ABC與∠ADC都是弧AC所對的圓周角,
∴∠ADC=∠B=60°.

(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠BAC=30°.
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE.
∴AE是⊙O的切線.
點評:本題考查了切線的判定與圓周角定理.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昭通)如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昭通)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上的一個動點(不與點A重合),延長ME交CD的延長線于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當AM的值為何值時,四邊形AMDN是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昭通)如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應(yīng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昭通)如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=
34
,拋物線y=a(x-2)2+m(a≠0)經(jīng)過點A(4,0)與點(-2,6).
(1)求拋物線的解析式;
(2)直線m與⊙C相切于點A,交y軸于點D,動點P在線段OB上,從點O出發(fā)向點B運動,同時動點Q在線段DA上,從點D出發(fā)向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長.當PQ⊥AD時,求運動時間t的值.

查看答案和解析>>

同步練習(xí)冊答案