【題目】如圖1,已知正方形的頂點(diǎn)分別在軸和軸上,邊交軸的正半軸于點(diǎn).
(1)若,且,求點(diǎn)的坐標(biāo);
(2)在(l)的條件下,若,求點(diǎn)的坐標(biāo);
(3)如圖2,連結(jié)交軸于點(diǎn),點(diǎn)是點(diǎn)上方軸上一動(dòng)點(diǎn),以、為邊作,使點(diǎn)恰好落在邊上,試探討,與的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1);(2);(3),見(jiàn)解析
【解析】
(1)根據(jù)a值和點(diǎn)A的坐標(biāo)可求得結(jié)果;
(2)作于,再作于,連,證明,得到,再根據(jù)得到,EN=1,設(shè),最后利用勾股定理求出m值即可;
(3)過(guò)F作FM⊥AB于M,FN⊥AD于N,證明Rt△BFM≌Rt△GFN,得到BF=GF,再證明△BAF≌△DAF,得到BF=DF,再通過(guò)勾股定理以及等量代換得到,與的數(shù)量關(guān)系.
解:(1)∵,
∴,
∴,
∴,
即點(diǎn)的坐標(biāo)為;
(2)解:作于,再作于,連,
則,
∴,
在與中,,
∴,
∴,
∵,
∴,EN=1,
在中,,
在中,,
設(shè),
∴,
∴,
∴;
(3)∵平行四邊形AFGH,
∴GH=AF,GF∥OA,即GF⊥BF,
過(guò)F作FM⊥AB于M,FN⊥AD于N,
∵AF平分∠BAD,
∴FM=FN,
又∵∠BAG=∠BFG=90°,
∴∠ABF+∠AGF=180°,
又∵∠DGF+∠AGF=180°,
∴∠MBF=∠NGF,
∴Rt△BFM≌Rt△GFN,
∴BF=GF,
又∵∠BAF=∠DAF=45°,AB=AD,AF=AF,
∴△BAF≌△DAF,
∴BF=DF,
∴GF=DF,
又∵FN⊥DG,
∴DN2=(DG)2,
∴DN2=DG2,
在Rt△AFN中,∠FAN=45°,
∴AN=FN,
∴AF2=AN2+FN2=2FN2,
∴FN2=AF2,
在Rt△DFN中,DF2=DN2+FN2,
∴BF2=DG2+AF2,
∴4BF2=DG2+2AF2,
又∵AF=HG,
∴4BF2=DG2+2HG2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( 。
A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,中,,.
(1)將向右平移個(gè)單位長(zhǎng)度,畫(huà)出平移后的;
(2)畫(huà)出關(guān)于軸對(duì)稱(chēng)的;
(3)將繞原點(diǎn)旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后的;
(4)在,,中,
______與______成軸對(duì)稱(chēng),對(duì)稱(chēng)軸是______;
______與______成中心對(duì)稱(chēng),對(duì)稱(chēng)中心的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)( )
A. 16 B. 24-4π C. 32-4π D. 32-8π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)均為l的小正方形網(wǎng)格紙中,△ABC的頂點(diǎn),A、B、C均在格點(diǎn)上,O為直角坐標(biāo)系的原點(diǎn),點(diǎn)A(-1,0)在x軸上.
(1)以O為位似中心,將△ABC放大,使得放大后的△A1B1C1與△ABC的相似比為2:1,要求所畫(huà)△A1B1C1與△ABC在原點(diǎn)兩側(cè);
(2)分別寫(xiě)出B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作EF⊥AC于點(diǎn)E,交AB的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)判斷直線(xiàn)DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)如果AB=5,BC=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車(chē)從甲地開(kāi)往乙地,一輛出租車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā). 設(shè)兩車(chē)離甲地的距離為,兩車(chē)行駛的時(shí)間為,圖中分別表示兩車(chē)離甲地的距離與行駛時(shí)間之間的關(guān)系.
(1)甲乙兩地距離是多少?
(2)哪條線(xiàn)表示客車(chē)離甲地的距離與行駛時(shí)間之間的關(guān)系?
(3)請(qǐng)求出對(duì)應(yīng)的兩個(gè)一次函數(shù)的關(guān)系式;
(4)兩車(chē)在行駛多長(zhǎng)時(shí)間后相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E在直線(xiàn)DF上,B在直線(xiàn)AC上,若∠AGB=∠EHF,∠C=∠D,試判斷∠A與∠F的關(guān)系,并說(shuō)明理由.
說(shuō)明:
因?yàn)椤?/span>AGB=∠EHF(已知)
∠AGB= (依據(jù): )
所以 ,(等量代換)
所以 (依據(jù): )
所以∠C= ,(依據(jù): )
又因?yàn)椤?/span>C=∠D,(已知)
所以 ,(等量代換)
所以DF∥AC(依據(jù): )
所以∠A=∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn).
如圖1,和均為等邊三角形,點(diǎn)、、均在同一直線(xiàn)上,連接.
①求證:.
②求的度數(shù).
③線(xiàn)段、之間的數(shù)量關(guān)系為__________.
(2)拓展探究.
如圖2,和均為等腰直角三角形,,點(diǎn)、、在同一直線(xiàn)上,為中邊上的高,連接.
①請(qǐng)判斷的度數(shù)為____________.
②線(xiàn)段、、之間的數(shù)量關(guān)系為________.(直接寫(xiě)出結(jié)論,不需證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com