【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關系.

(1)求線段AB所表示的y1與x之間的函數(shù)表達式;線段CD所表示的y2與x之間的函數(shù)表達式.

(2)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

【答案】(1)y1=-0.2x+60(0≤x≤90);y2=-0.6x+120(0≤x≤130);(2)當該產(chǎn)品產(chǎn)量為75kg時,獲得的利潤最大,最大值為2250.

【解析】

試題分析:(1)根據(jù)線段AB、線段CD經(jīng)過的兩點的坐標利用待定系數(shù)法確定一次函數(shù)的表達式即可;

(3)利用:總利潤=每千克利潤×產(chǎn)量,根據(jù)x的取值范圍列出有關x的二次函數(shù),求得最值比較可得.

試題解析:(1)設線段AB所表示的y1與x之間的函數(shù)關系式為y1=k1x+b1,

∵y1=k1x+b1的圖象過點(0,60)與(90,42),

∴段AB所表示的一次函數(shù)的表達式為;y1=-0.2x+60(0≤x≤90);

設y2與x之間的函數(shù)關系式為y2=k2x+b2,

∵經(jīng)過點(0,120)與(130,42),

解得:,

∴線段CD所表示的一次函數(shù)的表達式為y2=-0.6x+120(0≤x≤130);

(2)設產(chǎn)量為xkg時,獲得的利潤為W元,

①當0≤x≤90時,W=x[(-0.6x+120)-(-0.2x+60)]=-0.4(x-75)2+2250,

∴當x=75時,W的值最大,最大值為2250;

②當90≤x≤130時,W=x[(-0.6x+120)-42]=-0.6(x-65)2+2535,

∴當x=90時,W=-0.6(90-65)2+2535=2160,

由-0.6<0知,當x>65時,W隨x的增大而減小,

∴90≤x≤130時,W≤2160,

因此當該產(chǎn)品產(chǎn)量為75kg時,獲得的利潤最大,最大值為2250.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有, , , , 。

(1)請直接寫出點坐標。

(2)沿軸的正方向平移個單位, 、兩點的對應點、正好落在反比例函數(shù)在第一象限內(nèi)圖象上。請求出, 的值。

(3)(2)的條件下,問是否存軸上的點和反比例函數(shù)圖象上的點,使得以、, , 為頂點的四邊形構成平行四邊形?如果存在,請求出所有滿足條件的點和點的坐標;如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個數(shù)的絕對值與這個數(shù)的商等于1,則這個數(shù)是( )

A.正數(shù) B.負數(shù)C.非正 D.非負

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形中有一個角等于70°,則這個等腰三角形的頂角的度數(shù)是( )

A. 70° B. 40° C. 70°或40° D. 70°或55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).

(1)求反比例函數(shù)的解析式;

(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標;

(3)連接OF,OE,探究AOFEOC的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的半徑為2,AB為直徑,CD為弦,AB與CD交于點M,將弧CD沿著CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,鏈接PC。

1求CD的長;

2求證:PC是O的切線;

3點G為弧ADB的中點,在PC延長線上有一動點Q,連接QG交AB于點E,交弧BC于點FF與B、C不重合。問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張矩形紙片ABCD按如圖方式折疊,使頂點B落在邊AD上(記為點B),點A落在點A′處,折痕分別與邊AD、BC交于點E、F.

(1)試在圖中連接BE,求證:四邊形BFBE是菱形;

(2)若AB8,BC=16,求線段BF長能取到的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條弧所對的圓周角的度數(shù)是36°,則這條弧所對的圓心角的度數(shù)是( 。

A. 72° B. 54° C. 36° D. 18°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某花卉種植基地欲購進甲、乙兩種君子蘭進行培育,若購進甲種2株,乙種3株,則共需成本1700 ;若購進甲種3株,乙種1株,則共需成本1500元,

1)求甲乙兩種君子蘭每株成本多少元?

2)該種植基地決定在成本不超過30000元的前提下購進甲乙兩種君子蘭,若購進乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進甲種君子蘭多少株?

查看答案和解析>>

同步練習冊答案