如圖,AE∥BF,AC平分∠BAE,∠ACF=130°,求∠B的度數(shù).

解:∵∠ACF=130°,
∴∠ACB=180°-130°=50°,
∵AE∥BF,
∴∠ACB=∠EAC=50°,
∵AC平分∠BAE,
∴∠BAC=∠CAE=50°,
∴∠B=180°-50°-50°=80°,
故∠B的度數(shù)為80°.
分析:根據(jù)已知及補角的性質(zhì)可求得∠ACB的度數(shù),再根據(jù)平行線的性質(zhì)可求得∠EAC的度數(shù),由角平分線的性質(zhì)可求得∠BAC的度數(shù),最后根據(jù)三角形內(nèi)角和定理即可求解.
點評:此題主要考查學生對平行線的性質(zhì),三角形內(nèi)角和定理及角平分線性質(zhì)的綜合運用能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、如圖,AE∥BF,AC平分∠BAE,∠ACF=130°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•漳州模擬)如圖,AE∥BF,AC平分∠BAE,且交BF于點C,在AE上取一點D,使得AD=BC,連接CD和BD,BD交AC于點O.
(1)求證:△AOD≌△COB;
(2)求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AE∥BF,∠E=∠F,DE=CF,
(1)求證:AC=BD;
(2)請你探索線段DE與CF的位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,AE∥BF,∠E=∠F,下列添加的條件不能使△ADE≌△BCF的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AE∥BF,∠1=110°,∠2=130°,求∠3的度數(shù).

查看答案和解析>>

同步練習冊答案