已知二次函數(shù)y=x2-mx-1,當x<4時,函數(shù)值y隨x的增大而減小,則m的取值范圍是   
【答案】分析:先根據(jù)二次函數(shù)的解析式判斷出函數(shù)的開口方向,再由當x<4時,函數(shù)值y隨x的增大而減小可知二次函數(shù)的對稱軸x=-≥4,故可得出關(guān)于m的不等式,求出m的取值范圍即可.
解答:解:∵二次函數(shù)y=x2-mx-1中,a=1>0,
∴此函數(shù)開口向上,
∵當x<4時,函數(shù)值y隨x的增大而減小,
∴二次函數(shù)的對稱軸x=-≥4,即-≥4,
解得m≥8.
故答案為:m≥8.
點評:本題考查的是二次函數(shù)的性質(zhì),熟知二次函數(shù)的增減性是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知二次函數(shù)y=x2+mx+m-5,
(1)求證:不論m取何值時,拋物線總與x軸有兩個交點;
(2)求當m取何值時,拋物線與x軸兩交點之間的距離最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+(2a+1)x+a2-1的最小值為0,則a的值是( 。
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+m=0的解為( 。
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知二次函數(shù)y1=x2-x-2和一次函數(shù)y2=x+1的兩個交點分別為A(-1,0),B(3,4),當y1>y2時,自變量x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,它與x軸的一個交點坐標為(-1,0),與y軸的交點坐標為(0,3).
(1)試求二次函數(shù)的解析式;
(2)求y的最大值;
(3)寫出當y>0時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案