【題目】如圖,點(diǎn) O ABC 的邊 AB 上一點(diǎn),以 OB 為半徑的O BC 于點(diǎn) D,過(guò)點(diǎn) D 的切線交 AC 于點(diǎn) E,且 DEAC

(1)證明:ABAC;

(2)設(shè) ABcmBC=2cm,當(dāng)點(diǎn) O AB 上移動(dòng)到使O 與邊 AC 所在直線相切時(shí), O 的半徑.

【答案】(1)詳見(jiàn)解析;(2)

【解析】

(1)首先證明ODAC,推出∠ODB=C,由OB=OD,推出∠B=ODB,即可證明∠B=C;

(2)設(shè)AC與⊙O相切于點(diǎn)F,連接OF,作AHBCH,設(shè)半徑為r.解直角三角形求出AH,由tanC==2,推出EC=,推出AF=-r-=-r,在RtAOF中,根據(jù)OA2=AF2+OF2,構(gòu)建方程即可解決問(wèn)題.

(1)連接OD,

DE是⊙O的切線,

DEOD,

ACDE,

ODAC,

∴∠ODB=C,

OB=OD,

∴∠B=ODB,

∴∠B=C,

AB=AC;

(2)設(shè)AC與⊙O相切于點(diǎn)F,連接OF,作AHBCH,設(shè)半徑為r,

AB=AC,AHBC,

BH=CH=1,

AH==2,

tanC==2,

∵∠OFE=ODE=DEF=90°,

∴四邊形ODEF是矩形,

OD=OF,

∴四邊形ODEF是正方形,

EF=DE=r,

tanC==2,

EC=,

AF=﹣r﹣r=r,

RtAOF,OA2=AF2+OF2

﹣r)2=r2+(r)2,

解得r=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)銷售商從廠家購(gòu)進(jìn)了兩種型號(hào)的手機(jī),已知一臺(tái)型手機(jī)的進(jìn)價(jià)比一臺(tái)型手機(jī)的進(jìn)價(jià)多300元,用7500元購(gòu)進(jìn)型手機(jī)和用6000元購(gòu)進(jìn)型手機(jī)的數(shù)量相同.

1)求一臺(tái)型手機(jī)和一臺(tái)型手機(jī)的進(jìn)價(jià)各是多少元?

2)在銷售過(guò)程中,型手機(jī)因?yàn)樾詢r(jià)比高,更受消費(fèi)者的歡迎.為了增大型手機(jī)的銷量,該銷售商決定對(duì)型手機(jī)進(jìn)行降價(jià)銷售.經(jīng)調(diào)查,當(dāng)型手機(jī)的售價(jià)為1800元時(shí),每天可賣出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái).如果每天銷售型手機(jī)的利潤(rùn)為3200元,請(qǐng)問(wèn)該手機(jī)銷售商應(yīng)將型手機(jī)的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣a2關(guān)于y軸對(duì)稱且有最小值﹣1.

(1)求拋物線C1的解析式;

(2)在圖1中拋物線C1頂點(diǎn)為A,將拋物線C1 點(diǎn)B旋轉(zhuǎn)180°后得到拋物線C2,直線y=kx﹣2k+4總經(jīng)過(guò)一定點(diǎn)M,若過(guò)定點(diǎn)M的直線與拋物線C2只有一個(gè)公共點(diǎn),求直線l的解析式.

(3)如圖2,先將拋物線 C1向上平移使其頂點(diǎn)在原點(diǎn)O,再將其頂點(diǎn)沿直線y=x平移得到拋物線C3,設(shè)拋物線C3與直線y=x交于C、D兩點(diǎn),求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半徑為1的⊙O,AC=AB=,則∠CAB的度數(shù)為( 。

A. 15° B. 60° C. 75° D. 15°75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC,AB=AC,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到AEF,連結(jié)BE、CF相交于點(diǎn)D

(1)求證BE=CF;

(2)已知四邊形ACDE是菱形,∠BAC=45°,AB=AC=1.

求旋轉(zhuǎn)角BAE的度數(shù);

BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下 5 個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).

(1)該同學(xué)從 5 個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率 P ;

(2)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率 P1,利用列表法或樹(shù)狀圖加以說(shuō)明;

(3)該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率 P2 為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)yx2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OBOC.點(diǎn)D在函數(shù)圖象上,CDx軸,且CD=4,直線1是拋物線的對(duì)稱軸,E是拋物線的頂點(diǎn).

(1)求b、c的值;

(2)如圖1,連接BE,線段OC上的點(diǎn)F關(guān)于直線l的對(duì)稱點(diǎn)F'恰好在線段BE上,求點(diǎn)F的坐標(biāo);

(3)如圖2,動(dòng)點(diǎn)P在線段OB上,過(guò)點(diǎn)Px軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.拋物線上有一點(diǎn)Q,使得△PQN與△APM的面積相等,請(qǐng)求出點(diǎn)Q到直線PN的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C是AB延長(zhǎng)線上的點(diǎn),AC的垂直平分線交半圓于點(diǎn)D,交AC于點(diǎn)E,連接DA,DC.已知半圓O的半徑為3,BC=2.

(1)求AD的長(zhǎng).

(2)點(diǎn)P是線段AC上一動(dòng)點(diǎn),連接DP,作∠DPF=∠DAC,PF交線段CD于點(diǎn)F.當(dāng)DPF為等腰三角形時(shí),求AP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案