(本題滿分12分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.

(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.

①求證:△OCP∽△PDA;

②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);

(2)若圖1中的點(diǎn)P恰好是CD邊的中點(diǎn),求∠OAB的度數(shù);(提示:直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為300)

(3)如圖2,,擦去折痕AO、線段OP,連結(jié)BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長(zhǎng)度.

見解析

【解析】

試題分析:(1)①由四邊形ABCD是矩形可得∠C=∠D=90°,根據(jù)互余可得∠APD=∠POC,所以△OCP∽△PDA,②根據(jù)△OCP∽△PDA可求出CP=4,BC=8,設(shè)OP=x,在Rt△PCO中,由勾股定理可得x=5,從而AB=AP=2OP=10;(2)因?yàn)椤螪=90°,=,所以根據(jù)性質(zhì):直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為300可得∠DAP=30°,又∠PAO=∠BAO,所以∠OAB=30°;( 3)作MQ∥AN,交PB于點(diǎn)Q,可證得△MFQ≌△NFB,所以QF=BF,然后可得EF=EQ+QF=PQ+QB=PB,而PB==4,所以EF=PB=2

試題解析:(1)如圖1,

①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.

由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO.∠APO=∠B.

∴∠APO=90°.

∴∠APD=90°﹣∠CPO=∠POC.

∵∠D=∠C,∠APD=∠POC.

∴△OCP∽△PDA.

②∵△OCP與△PDA的面積比為1:4,

====

∴PD=2OC,PA=2OP,DA=2CP.

∵AD=8,∴CP=4,BC=8.

設(shè)OP=x,則OB=x,CO=8﹣x.

在Rt△PCO中,

∵∠C=90°,CP=4,OP=x,CO=8﹣x,

∴x2=(8﹣x)2+42.

解得:x=5.

∴AB=AP=2OP=10.

∴邊AB的長(zhǎng)為10.

(2)如圖1,

∵P是CD邊的中點(diǎn),

∴DP=DC.

∵DC=AB,AB=AP,

∴DP=AP.

∵∠D=90°,

=

∴∠DAP=30°.

∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°,

∴∠OAB=30°.

∴∠OAB的度數(shù)為30°.

(3)作MQ∥AN,交PB于點(diǎn)Q,如圖2.

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP,∠ABP=∠MQP.

∴∠APB=∠MQP.

∴MP=MQ.

∵M(jìn)P=MQ,ME⊥PQ,

∴PE=EQ=PQ.

∵BN=PM,MP=MQ,

∴BN=QM.

∵M(jìn)Q∥AN,

∴∠QMF=∠BNF.

在△MFQ和△NFB中,

∴△MFQ≌△NFB.

∴QF=BF.

∴QF=QB.

∴EF=EQ+QF=PQ+QB=PB.

由(1)中的結(jié)論可得:

PC=4,BC=8,∠C=90°.

∴PB==4

∴EF=PB=2

∴在(1)的條件下,當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長(zhǎng)度不變,長(zhǎng)度為2

考點(diǎn):1.矩形的性質(zhì);2.相似三角形的判定與性質(zhì);3.直角三角形的性質(zhì);4.全等三角形的判定與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案